Simultaneous Linear Equations

Name: \qquad Class: \qquad ()

1. Solve the following simultaneous linear equations using the method of elimination.
(a) $\left\{\begin{array}{l}x-y=0 \\ 3 x+2 y=10\end{array}\right.$
(b) $\left\{\begin{array}{l}x+1=y \\ 3 x+y=5\end{array}\right.$
(c) $\left\{\begin{array}{l}x=-y \\ x+2 y=1\end{array}\right.$
2. Plot the graphs and locate the point of intersection.
(a) $x-y=0$

$$
3 x+2 y=10
$$

x	0	1	2
y			

x	0	2	4
y			

The point of intersection is (\qquad , \qquad).
(b)

$$
x+1=y
$$

$$
3 x+y=5
$$

x	0	1	2
y			

x	0	1	2
y			

The point of intersection is (
(c) $x=-y$

x	0	1	2
y			

x	1	3	5
y			

The \qquad
3. Study the answers to questions 1 and 2 . What can you observe?
4. Discuss your observation with your partner. Explain your observation.

Conclusion:

5. Exercise
a) Without drawing the graph, find the point of intersection of the following two straight lines.

$$
y-x=0 \quad \text { and } \quad 2 x+y=9
$$

The \qquad .
bi) Solve the following equations graphically.

$$
\left\{\begin{array}{l}
3 x+y=1 \\
x+5 y=26
\end{array}\right.
$$

The \qquad .
ii) Solve the equations in part (i) using the method of elimination or substitution.
iii) Compare the answers to parts (i) and (ii), which one is more accurate?
iv) What is/are the disadvantage(s) of solving simultaneous linear equations by the graphical method?

Suggested Answers

1a) $x-y=0----$ (i)
$3 x+2 y=10$---- (ii)
(i) $\mathrm{x} 2+(\mathrm{ii})$,
$2 x-2 y+3 x+2 y=10$
$5 \mathrm{x}=10$
$\mathrm{x}=2$
$y=2$
The solution is $x=2, y=2$
b) $x+1=y--$ (i)
$3 x+y=5---(i i)$
(i) + (ii),
$x+1+3 x+y=y+5$
$4 \mathrm{x}+1=5$
$\mathrm{x}=1$
$\mathrm{y}=2$
The solution is $x=1, y=2$
c) $\quad x=-y--(i)$
$x+2 y=1$---(ii)
(ii)-(i),
$x+2 y-x=1+y$
$2 \mathrm{y}=1+\mathrm{y}$
$\mathrm{y}=1$
$x=-1$
The solution is $\mathrm{x}=-1, \mathrm{y}=1$
2. Plot the graphs and locate the point of intersection.
a)
$x-y=0$

$$
3 x+2 y=10
$$

x	0	1	2
y	0	1	2

x	0	2	4
y	5	2	-1

The point of intersection is (\qquad).
b)

$$
x+1=y
$$

$$
3 x+y=5
$$

x	0	1	2
y	1	2	3

x	0	1	2
y	5	2	-1

The point of intersection is ($_$_ $\ldots, 2 _$).
c) $\quad x=-y$

x	0	1	2
y	0	-1	-2

$x+2 y=1$

x	0	1	2
y	0	-1	-2

The point of intersection is $(-1,1)$.

Conclusion: The intersection point of the graph of the two linear equations is the solution of the simultaneous linear equations.

5 a) $y-x=0$

$$
2 x+y=9
$$

$\mathrm{x}=\mathrm{y}$
$2 \mathrm{x}+\mathrm{y}=9$
$2 x+x=9$
$3 x=9$
$\mathrm{x}=3$
$y=3$
The solution is $x=3, y=3$
As the coordinates of the intersection point are the same as the solution, the point of intersection is $(3,3)$.
bi)
$3 x+y=1$

x	-1	0	1
y	4	1	-2

x	-4	1	6
y	6	5	4

The solution is $x=-1.5, y=5.5$
ii) Put $y=1-3 x$ into $x+5 y=26$
$x+5(1-3 x)=26$
$x+5-15 x=26$
$\mathrm{x}=-1.5$
$y=1-3(-1.5)=5.5$
The solution is $x=-1.5, y=5.5$
iii) The answer in part (ii) is more accurate.
iv) e.g. It is time consuming to draw the graph

Reading the solution from the graph may not be accurate

