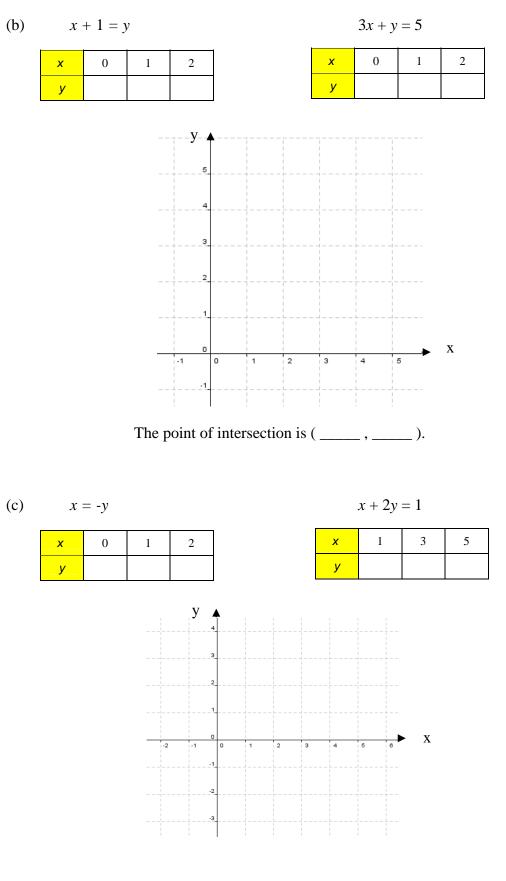

Simultaneous Linear Equations

Name: Class: ()
Closes ()


1. Solve the following simultaneous linear equations using the method of elimination.

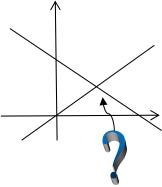
(2)	$\int x - y = 0$	(h) <	$\begin{cases} x+1 = y \\ 3x+y = 5 \end{cases}$	(c)	x = -y $x + 2y = 1$
(a) ·	$\begin{cases} x - y = 0\\ 3x + 2y = 10 \end{cases}$	(0)	3x + y = 5		x + 2y = 1

2. Plot the graphs and locate the point of intersection.

The point of intersection is (_____, ____).

.

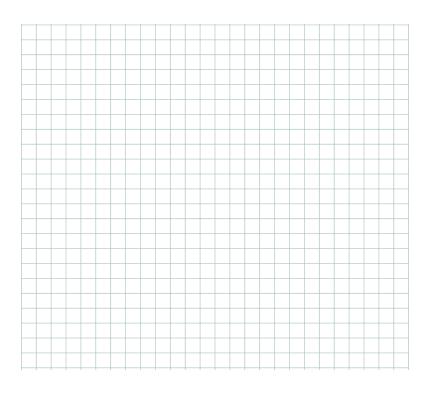
3. Study the answers to questions 1 and 2. What can you observe?


4. Discuss your observation with your partner. Explain your observation.

Conclusion:

5. Exercise

a) Without drawing the graph, find the point of intersection of the following two straight lines.


y - x = 0 and 2x + y = 9

The _____

b i) Solve the following equations graphically.

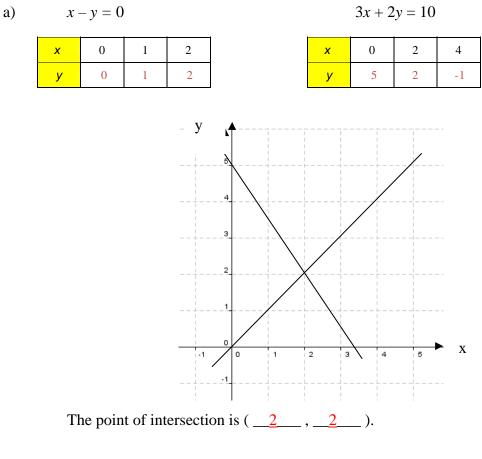
$$\begin{cases} 3x + y = 1\\ x + 5y = 26 \end{cases}$$

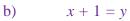
The _____.

ii) Solve the equations in part (i) using the method of elimination or substitution.

iii) Compare the answers to parts (i) and (ii), which one is more accurate?

iv) What is/are the disadvantage(s) of solving simultaneous linear equations by the graphical method?


Suggested Answers

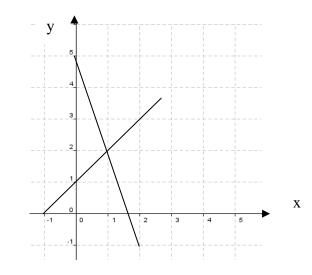

1a)
$$x - y = 0$$
 ----- (i)
 $3x + 2y = 10$ ----- (ii)
(i) $x 2 + (ii)$,
 $2x-2y+3x+2y = 10$
 $5x = 10$
 $x = 2$
 $y = 2$
The solution is $x=2, y=2$

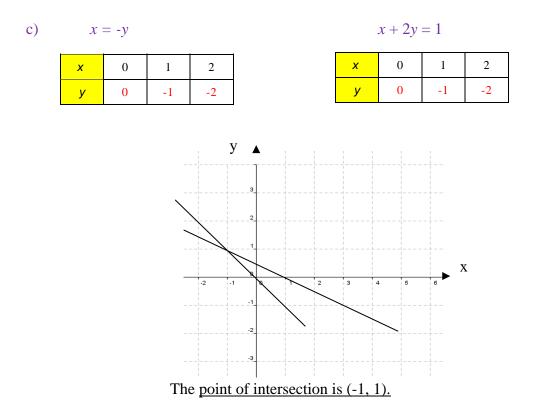
b)
$$x+1=y --- (i)$$

 $3x+y=5 ---(ii)$
 $(i) + (ii),$
 $x+1+3x+y = y+5$
 $4x+1 = 5$
 $x=1$
 $y=2$
The solution is $x=1, y=2$

c) x=-y ---(i) x+2y=1 ---(ii) (ii)-(i), x+2y-x =1+y 2y=1+y y=1 x=-1 The solution is x =-1, y = 1

2. Plot the graphs and locate the point of intersection.



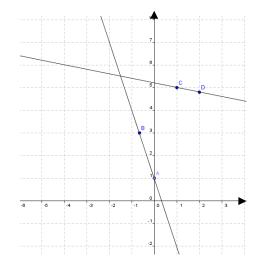

3x + y = 5

x	0	1	2
у	1	2	3

x	0	1	2
у	5	2	-1

The point of intersection is $(\underline{1}, \underline{2})$.

Conclusion: The intersection point of the graph of the two linear equations is the solution of the simultaneous linear equations.


5 a) y-x=0 x=y 2x+y=9 2x+y=9 2x+x=9 3x=9 x=3 y=3The solution is x=3, y=3As the coordinates of the intersection point are the same as the solution, the point of intersection is (3,3). b i)

3x + y = 1

x +	5y	=	26	
-----	----	---	----	--

x	-1	0	1
У	4	1	-2

x	-4	1	6
У	6	5	4

The solution is x=-1.5, y=5.5

- ii) Put y=1-3x into x+5y=26 x+5(1-3x)=26 x+5-15x=26 x=-1.5 y=1-3(-1.5) =5.5 The solution is x=-1.5, y=5.5
- iii) The answer in part (ii) is more accurate.
- iv) e.g. It is time consuming to draw the graphReading the solution from the graph may not be accurate