General Solutions (+ 2πn) of Multiple Angle Equations

Shari Bruyn & Associates Putting the Fun in the Fundamentals of Math

Equations - General Solutions of Multiple Angles in Radians Solve the multiple angle equations giving the general solution in radians. Match the solution(s) with the problem by drawing a straight line. The line will go through one group of letters and a number. Write the letters below the correct numbers below to find out what happened when two antennas fell in love and got married. Solutions may be used more than once.

1. $sin(2x) = -1 \bullet$					MON			• <u>πn</u> 2	
2. tan(26	9) + 4 = 4	• 3					10	• $\frac{4\pi}{3}$ + 47	τ n
					ECE		8	$\bullet \frac{3\pi}{4} + \pi r$	1
3. $sec(\frac{\theta}{2})$) = −2 ∙		1	12		ONWA		• $\frac{8\pi}{3}$ + 47	τ n
4. cot(24	⊉) + 5 = 6	•	YWA				4	$\bullet \frac{\pi}{8} + \frac{\pi n}{2}$	
5. <u>-</u> ₂sin($(3x) = \frac{\sqrt{2}}{5}$	•	9			HER		$\bullet \frac{5\pi}{12} + \frac{2\pi i}{3}$	<u>1</u>
			IANT	ILL	15	14 5	2	$\bullet \frac{5\pi}{18} + \frac{\pi n}{3}$	
6. csc (3	β) = – √2	•	5			SNO		$\bullet \frac{7\pi}{12} + \frac{2\pi i}{3}$	<u>n</u>
7. 9tan($(3\theta) = -3\sqrt{2}$	3•	ERE			THEC	2	• $\frac{5\pi}{2}$ + 6 π	τ n
				1		PT		• 2π + 4	4πn
82cos($\left(\frac{\theta}{3}\right) = \sqrt{3} \bullet$				TMU		СНВ	$\bullet \frac{\pi}{6} + \frac{\pi n}{2}$	
9. $\cot(\frac{\theta}{4})$) + 1 = 1 •	11	7	,	11110		6	• $\frac{7\pi}{2}$ + 67	τ n
10. –3cso	$c(4eta) = -\mathbf{a}$	2√3 ∙	,		SBR		13	$\bullet \frac{\pi}{12} + \frac{\pi n}{2}$	
1	2	3	3		4	5		6	7
8	9	10	11		12	13	14	15	

Equations - General Solutions of Multiple Angles in Radians Solve the multiple angle equations giving the general solution in radians. Match the solution(s) with the problem by drawing a straight line. The line will go through one group of letters and a number. Write the letters below the correct numbers below to find out what happened when two antennas fell in love and got married. Solutions may be used more than once.

