

SOLVING TRIGONOMETRIC EQUATIONS

Copyright © Cengage Learning. All rights reserved.

What You Should Learn

- Use standard algebraic techniques to solve trigonometric equations.
- Solve trigonometric equations of quadratic type.
- Solve trigonometric equations involving multiple angles.
- Use inverse trigonometric functions to solve trigonometric equations.

Introduction

To solve a trigonometric equation, use standard algebraic techniques such as collecting like terms and factoring.

Your preliminary goal in solving a trigonometric equation is to *isolate* the trigonometric function in the equation.

For example, to solve the equation $2 \sin x = 1$, divide each side by 2 to obtain

$$\sin x = \frac{1}{2}.$$

To solve for *x*, note in Figure 5.6 that the equation $\sin x = \frac{1}{2}$ has solutions $x = \pi/6$ and $x = 5\pi/6$ in the interval [0, 2π).

Figure 5.6

Moreover, because sin *x* has a period of 2π , there are infinitely many other solutions, which can be written as

$$x = \frac{\pi}{6} + 2n\pi$$
 and $x = \frac{5\pi}{6} + 2n\pi$ General solution

where *n* is an integer, as shown in Figure 5.6.

Another way to show that the equation $\sin x = \frac{1}{2}$ has infinitely many solutions is indicated in Figure 5.7.

Any angles that are coterminal with $\pi/6$ or $5\pi/6$ will also be solutions of the equation.

When solving trigonometric equations, you should write your answer(s) using exact values rather than decimal approximations.

Example 1 – Collecting Like Terms

Solve
$$\sin x + \sqrt{2} = -\sin x$$
.

Solution:

Begin by rewriting the equation so that sin *x* is isolated on one side of the equation.

$$\sin x + \sqrt{2} = -\sin x$$
Write original equation.

$$\sin x + \sin x + \sqrt{2} = 0$$
Add sin x to each side.

$$\sin x + \sin x = -\sqrt{2}$$
Subtract $\sqrt{2}$ from each side.

Example 1 – Solution

$$2\sin x = -\sqrt{2}$$

 $\sin x = -\frac{\sqrt{2}}{2}$

Combine like terms.

Divide each side by 2.

Because sin x has a period of 2π , first find all solutions in the interval [0, 2π).

These solutions are $x = 5\pi/4$ and $x = 7\pi/4$. Finally, add multiples of 2π to each of these solutions to get the general form

$$x = \frac{5\pi}{4} + 2n\pi$$
 and $x = \frac{7\pi}{4} + 2n\pi$ General solution

where *n* is an integer.

cont'd

Equations of Quadratic Type

Equations of Quadratic Type

Many trigonometric equations are of quadratic type $ax^2 + bx + c = 0$. Here are a couple of examples.

Quadratic in sin xQuadratic in sec x $2 \sin^2 x - \sin x - 1 = 0$ $\sec^2 x - 3 \sec x - 2 = 0$

 $2(\sin x)^2 - \sin x - 1 = 0 \qquad (\sec x)^2 - 3(\sec x) - 2 = 0$

To solve equations of this type, factor the quadratic or, if this is not possible, use the Quadratic Formula.

Example 4 – Factoring an Equation of Quadratic Type

Find all solutions of $2 \sin^2 x - \sin x - 1 = 0$ in the interval $[0, 2\pi)$.

Solution:

Begin by treating the equation as a quadratic in sin *x* and factoring.

 $2 \sin^2 x - \sin x - 1 = 0$ Write original equation.

 $(2 \sin x + 1)(\sin x - 1) = 0$

Factor.

Example 4 – Solution

cont'd

Setting each factor equal to zero, you obtain the following solutions in the interval $[0, 2\pi)$.

 $2 \sin x + 1 = 0$ and $\sin x - 1 = 0$

 $\sin x = -\frac{1}{2} \qquad \qquad \sin x = 1$

 $x = \frac{7\pi}{6}, \frac{11\pi}{6}$ $x = \frac{\pi}{2}$

Functions Involving Multiple Angles

Functions Involving Multiple Angles

The next example involves trigonometric functions of multiple angles of the forms sin *ku* and cos *ku*.

To solve equations of these forms, first solve the equation for *ku*, then divide your result by *k*.

Example 7 – *Functions of Multiple Angles*

Solve $2 \cos 3t - 1 = 0$.

Solution:

 $2\cos 3t - 1 = 0$ Write original equation.

 $2 \cos 3t = 1$ Add 1 to each side.

$$\cos 3t = \frac{1}{2}$$

Divide each side by 2.

In the interval [0, 2π), you know that $3t = \pi/3$ and $3t = 5\pi/3$ are the only solutions, so, in general, you have

$$3t = \frac{\pi}{3} + 2n\pi$$
 and $3t = \frac{5\pi}{3} + 2n\pi$.

Dividing these results by 3, you obtain the general solution

$$t = \frac{\pi}{9} + \frac{2n\pi}{3}$$
 and $t = \frac{5\pi}{9} + \frac{2n\pi}{3}$

General solution

where *n* is an integer.

cont'd

Using Inverse Functions

Using Inverse Functions

In the next example, you will see how inverse trigonometric functions can be used to solve an equation.

Example 9 – Using Inverse Functions

Solve $\sec^2 x - 2 \tan x = 4$.

Solution: $\sec^2 x - 2 \tan x = 4$ Write original equation. $1 + \tan^2 x - 2 \tan x - 4 = 0$ Pythagorean identity $\tan^2 x - 2 \tan x - 3 = 0$ Combine like terms. $(\tan x - 3)(\tan x + 1) = 0$ Factor.

cont'd

Setting each factor equal to zero, you obtain two solutions in the interval ($-\pi/2$, $\pi/2$). [Recall that the range of the inverse tangent function is ($-\pi/2$, $\pi/2$).]

 $\tan x - 3 = 0$ and $\tan x + 1 = 0$

 $\tan x = 3 \qquad \qquad \tan x = -1$

 $x = \arctan 3$ $x = -\frac{\pi}{4}$

Finally, because tan x has a period of π , you obtain the general solution by adding multiples of π

$$x = \arctan 3 + n\pi$$
 and $x = -\frac{\pi}{4} + n\pi$ General solution

where *n* is an integer.

You can use a calculator to approximate the value of arctan 3.

cont'd