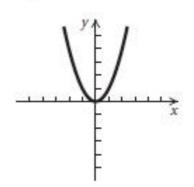
POWER FUNCTIONS in x are of the form x^n . If n > 0, the graph of $y = x^n$ is said to be of the parabolic type (the curve is a parabola for n = 2). If n < 0, the graph of $y = x^n$ is said to be of the hyperbolic type (the curve is a hyperbola for n = -1).

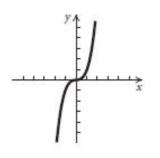
1. Function with positive natural exponent $y = x^n$; $n \in N$

A) even exponent

Domain = R Range = $\langle 0, \infty \rangle$ Many – to – one function Decreasing $(-\infty, 0)$ Increasing $\langle 0, \infty \rangle$ Bounded from below Even There is a local minimum at the point x = 0



B) odd exponent

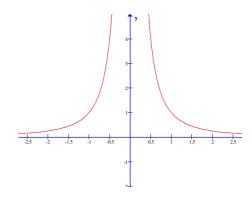


Domain = R Range = R One to one function Increasing Not bounded Odd No minimum, No maximum

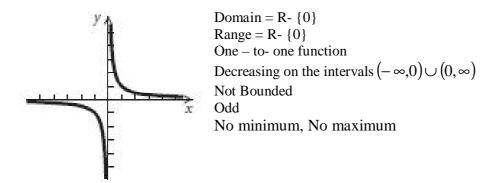
2. Function with negative integer exponent $y = x^{-n}$; $n \in \mathbb{Z}$

A) even integer

Domain = R- $\{0\}$ Range = $(0, \infty)$ Many – to- one function Increasing $(-\infty, 0)$ Decreasing $(0, \infty)$ Bounded from below (lower limit) Even No minimum, No maximum



B) odd integer

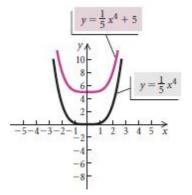


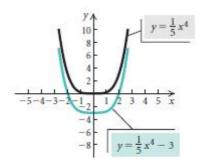
Vertical Translation

For b > 0,

the graph of y = f(x) + b is the graph of y = f(x) shifted up b units;

the graph of y = f(x) - b is the graph of y = f(x) shifted *down b* units.





Horizontal Translation

For d > 0:

the graph of y = f(x - d) is the graph of y = f(x) shifted right d units;

the graph of y = f(x + d) is the graph of y = f(x) shifted *left* d units.

Reflections

The graph of y = -f(x) is the **reflection** of the graph of y = f(x) across the *x*-axis. The graph of y = f(-x) is the **reflection** of the graph of y = f(x) across the *y*-axis. If a point (x, y) is on the graph of y = f(x), then (x, -y) is on the

graph of y = -f(x), and (-x, y) is on the graph of y = f(-x).

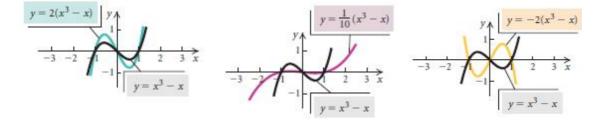
Vertical Stretching and Shrinking

The graph of y = af(x) can be obtained from the graph of y = f(x) by

stretching vertically for |a| > 1, or

shrinking vertically for 0 < |a| < 1.

For a < 0, the graph is also reflected across the *x*-axis. (The *y*-coordinates of the graph of y = af(x) can be obtained by multiplying the *y*-coordinates of y = f(x) by *a*.)

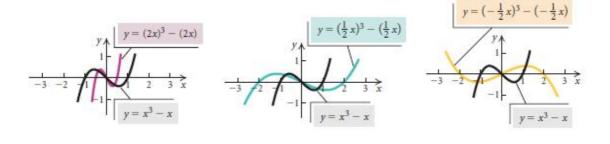


Horizontal Stretching and Shrinking

The graph of y = f(cx) can be obtained from the graph of y = f(x) by

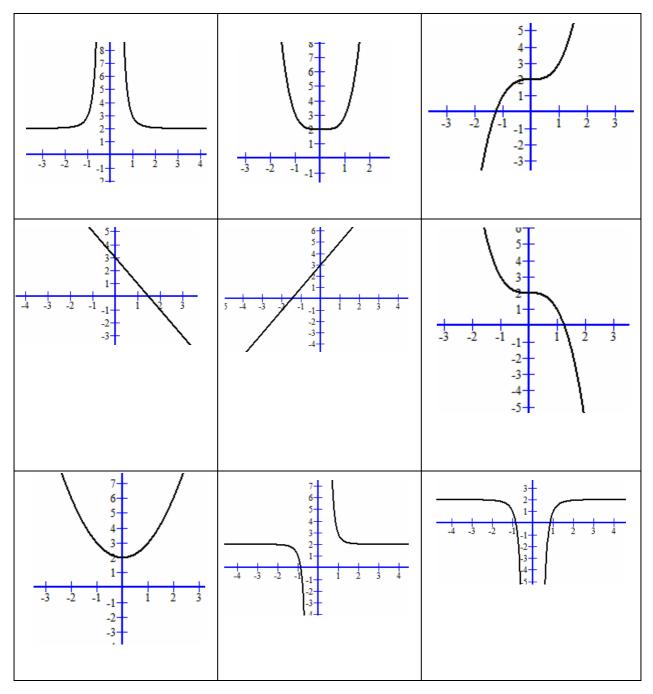
shrinking horizontally for |c| > 1, or stretching horizontally for 0 < |c| < 1.

For c < 0, the graph is also reflected across the *y*-axis. (The *x*-coordinates of the graph of y = f(cx) can be obtained by dividing the *x*-coordinates of the graph of y = f(x) by *c*.)



Exercise:

Match the graphs with the corresponding equations



1. y = 2x+3	2. $y = x^4 + 2$	3. $y = x^{-5} + 2$	4. $y = -x^4 + 2$	5. $y = x^3 + 2$
6. $y = x^{-4} + 2$	7. $y = -2x + 3$	8. $y = x^2 + 2$	9. $y = -x^3 + 2$	