POWER FUNCTIONS in x are of the form x^{n}. If $n>0$, the graph of $y=x^{n}$ is said to be of the parabolic type (the curve is a parabola for $n=2$). If $n<0$, the graph of $y=x^{n}$ is said to be of the hyperbolic type (the curve is a hyperbola for $\mathrm{n}=-1$).

1. Function with positive natural exponent $y=x^{n} ; n \in N$
A) even exponent

Domain $=\mathrm{R}$
Range $=\langle 0, \infty)$
Many - to - one function
Decreasing $(-\infty, 0\rangle$
Increasing $\langle 0, \infty$)
Bounded from below
Even
There is a local minimum at the point $x=0$

B) odd exponent

Domain $=R$

Range $=R$
One to one function
Increasing
Not bounded
Odd
No minimum, No maximum
2. Function with negative integer exponent $y=x^{-n} ; n \in Z$
A) even integer

Domain $=\mathrm{R}-\{0\}$
Range $=(0, \infty)$
Many - to- one function
Increasing $(-\infty, 0)$
Decreasing $(0, \infty)$
Bounded from below (lower limit)
Even
No minimum, No maximum

B) odd integer

Domain $=$ R- $\{0\}$
Range $=$ R- $\{0\}$
One - to- one function
Decreasing on the intervals $(-\infty, 0) \cup(0, \infty)$
Not Bounded
Odd
No minimum, No maximum

Vertical Translation

For $b>0$,
the graph of $y=f(x)+b$ is the graph of $y=f(x)$ shifted $u p$ b units;
the graph of $y=f(x)-b$ is the graph of $y=f(x)$ shifted down b units.

Horizontal Translation

For $d>0$:
the graph of $y=f(x-d)$ is the graph of $y=f(x)$ shifted right d units;
the graph of $y=f(x+d)$ is the graph of $y=f(x)$ shifted left d units.

Reflections

The graph of $y=-f(x)$ is the reflection of the graph of $y=f(x)$ across the x-axis.
The graph of $y=f(-x)$ is the reflection of the graph of $y=f(x)$ across the y-axis.
If a point (x, y) is on the graph of $y=f(x)$, then $(x,-y)$ is on the graph of $y=-f(x)$, and $(-x, y)$ is on the graph of $y=f(-x)$.

Vertical Stretching and Shrinking

The graph of $y=a f(x)$ can be obtained from the graph of $y=f(x)$ by
stretching vertically for $|a|>1$, or
shrinking vertically for $0<|a|<1$.
For $a<0$, the graph is also reflected across the x-axis.
(The y-coordinates of the graph of $y=a f(x)$ can be obtained by multiplying the y-coordinates of $y=f(x)$ by a.)

Horizontal Stretching and Shrinking

The graph of $y=f(c x)$ can be obtained from the graph of $y=f(x)$ by
shrinking horizontally for $|c|>1$, or
stretching horizontally for $0<|c|<1$.
For $c<0$, the graph is also reflected across the y-axis.
(The x-coordinates of the graph of $y=f(c x)$ can be obtained
by dividing the x-coordinates of the graph of $y=f(x)$ by c.)

Exercise:

Match the graphs with the corresponding equations

1. $\mathrm{y}=2 \mathrm{x}+3$	2. $y=x^{4}+2$	3. $y=x^{-5}+2$	4. $y=-x^{4}+2$	5. $y=x^{2}+2$
6. $y=x^{-4}+2$	7. $y=-2 x+3$	8. $y=x^{2}+2$	$9 . y=-x^{3}+2$	

