M11Ac 2012/2013 (ADEC Grade 11 Academic Mathematics) mark scheme

Multiple Choice Questions (1 mark each; 10 marks in total):

Question	1	2	3	4	5	6	7	8	9	10
Answer	С	D	В	С	С	D	В	Α	В	Α
Туре	Ш	IV	Ш	Ξ	I	Ш	Π	Ξ	=	П

Student Response Questions: - <u>NO Half Marks</u>

		Answers	Mark Allocation	Total	TYPE
11a	<i>x</i> + 4	$ \begin{array}{r} 2x^2 + 7x + 5 \\ \hline 2x^3 + 15x^2 + 33x + 20 \\ \hline -(2x^3 + 8x^2) \\ 7x^2 + 33x \\ \hline -(7x^2 + 28x) \\ 5x + 20 \\ \hline -(5x + 20) \\ \hline 0 \end{array} $	[4] all correct -1 for each mistake	4	III
11b		$2x^{2} + 7x + 5)$ 2x + 5)(x + 1)	[1] Partially factorised[2] Fully factorised	2	I
12	f(3) = -3 $\Rightarrow (3)^3 + a(3)^3 + a(3)^$		[1] each line of working[1][1][1]	4	I
13a	-5 -4 -3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 [3] Correct x -intercepts [1] Correct y-intercept 	4	IV
13b	Several verti	cal lines only crossing graph once	[1]	1	11
13c	At any time	t object can only be in one place	[1] reasonable explanation	1	II
13d		$x - 3 \times -5 = 15$ fore the whistle blows the train is 15 metres pint O	[1] 15 m [1] 1 sec before	2	II

14a	$\log_a 3 = \frac{1}{2}$			
	$a_{2}^{1} = 3$ $a = 3^{2}$ $a = 9$ $y = \log_{9} x$	[1] for $a^{\frac{1}{2}} = 3$ [1] for $a = 9$	2	II
14b	$ \begin{array}{c} $	 [1] Correct shape [1] Through (0,1) [1] <i>x</i>-axis asymptote 	3	IV
14c	y-axis is an asymptote, x- axis is an asymptote Passes through (1,0), passes through (0,1) Domain $x > 0$, range $y > 0$ Passes through (3, ½) passes through (½, 3)	[1] each relevant comparison	2	II
15	$f'(x) = \lim_{h \to 0} \frac{6(x+h)^2 - 6x^2}{h}$	[1]		
	$\frac{6(x^2+2xh+h^2)-6x^2}{h}$	[1]		
	$\frac{12xh+6h^2}{h}$	[1]	5	ш
	12x + h $\therefore f'(x) = \lim_{h \to 0} 12x + h$	[1]	-	
	$\therefore f'(x) = 12x$	[1]		

18a	$1.2 \times 1.1^{t} = 1$ $1.1^{t} = \frac{2}{1.2} = 1$ $t \log 1.1 = \log 1.66 \dots$ t = 5.4 years	1.6666 1.66		[1] [1] [1] [1] [1]rounded clearly	5	I
18b	When $t = 10$, When $t = 5$, h Average rate of		$=\frac{1.18}{5}=0.236$	[1] [1] [2]	4	
18c	Between 5 and cm per year on		anting, the tree grows 24	[1] 5 to 10 years after planting [1] 24 cm	2	11
18d	15.1 15.01 14.9 14.99	5.0607 5.0175 4.9651 5.0079	$\frac{\frac{5.0607 - 5.0127}{15.1 - 15} = 0.48}{\frac{5.0175 - 5.0127}{15.01 - 15} = 0.48}$ $\frac{\frac{5.0127 - 4.9651}{15 - 14.9} = 0.476}{\frac{5.0127 - 5.0079}{15 - 14.99} = 0.48}$	[1] each line of the table	3	111
18e	The gradient approaches 0.5			[1] 0.5	1	
18f	The tree cannot increasing rate	t continue to grow	w forever at an	[1]Any reasonable answer about continuing to grow [1]Rate of growth is increasing	2	11
18g	0 ≤ <i>x</i> ≤ 20			[1] correct answer only	1	