Math 30-1: Trigonometry One PRACTICE EXAM

1. The angle 210° is equivalent to:
A. $\frac{5 \pi}{6}$ degrees
B. $\frac{5 \pi}{6}$ radians
C. $\frac{7 \pi}{6}$ degrees
D. $\frac{7 \pi}{6}$ radians
2. The reference angle of $\frac{12 \pi}{7}$ is:
A. $-\frac{\pi}{7}$ radians
B. $\frac{\pi}{7}$ radians
C. $\frac{2 \pi}{7}$ radians
D. $\frac{6 \pi}{7}$ radians
3. The principal angle of 9.00 radians is shown in:
A.

B.

D.

4. The co-terminal angles of 60° within the domain $-360^{\circ} \leq \theta<1080^{\circ}$ are:
A. $\theta_{c}=-360^{\circ}, 0,360^{\circ}, 720^{\circ}$
B. $\theta_{c}=-360^{\circ}, 0,360^{\circ}, 720^{\circ}, 1080^{\circ}$
C. $\theta_{c}=-300^{\circ}, 420^{\circ}, 780^{\circ}$
D. $\theta_{c}=-300^{\circ}, 60^{\circ}, 420^{\circ}, 780^{\circ}$
5. The principal angle of $\frac{95 \pi}{6}$ is:
A. $\frac{\pi}{3}$ radians
B. $\frac{5 \pi}{6}$ radians
C. $\frac{7 \pi}{6}$ radians
D. $\frac{11 \pi}{6}$ radians
6. If $\frac{2 \pi}{5}$ is rotated 14 times clockwise, the new angle is:
A. $-\frac{138 \pi}{5}$
B. $-\frac{68 \pi}{5}$
C. $\frac{72 \pi}{5}$
D. $\frac{142 \pi}{5}$
7. If $\sec \theta>0$ and $\tan \theta<0$, the angle θ is in:
A. Quadrant I
B. Quadrant II
C. Quadrant III
D. Quadrant IV
8. If $\sec \theta=\frac{5}{4}$ and $\sin \theta<0$, then $\cot \theta$ is equivalent to:
A. $\cot \theta=-\frac{4}{3}$
B. $\cot \theta=-\frac{3}{4}$
C. $\cot \theta=\frac{3}{4}$
D. $\cot \theta=\frac{4}{3}$
9. The value of a in the diagram is:
A. 0.03 cm
B. 13.35 cm
C. 30.60 cm
D. 765 cm

10. The arc length formula, $a=r \theta$, is found by multiplying the circumference of a circle by the percentage of the circle occupied by the arc.

$$
a=2 \pi r \times \frac{\theta}{2 \pi}=r \theta
$$

The formula for the area of a circle sector uses a similar approach, where the area of a circle $\left(A=\pi r^{2}\right)$ is multiplied by the percentage
 of the circle occupied by the sector.

The area of a circle sector is:
A. $A=\frac{r \theta}{2}$
B. $A=\frac{r^{2} \theta}{2}$
C. $A=\frac{\pi r \theta}{2}$
D. $A=\frac{\pi r^{2} \theta}{2}$
11. A satellite orbiting Earth 340 km above the surface makes one complete revolution every 90 minutes. The radius of Earth is approximately 6370 km.
The angular speed of the satellite is:
A. $\frac{\pi}{5400} \mathrm{rad} / \mathrm{s}$
B. $\frac{\pi}{2700} \mathrm{rad} / \mathrm{s}$
C. $\frac{\pi}{90} \mathrm{rad} / \mathrm{s}$
D. $\frac{\pi}{45} \mathrm{rad} / \mathrm{s}$

12. The equation of the unit circle is $x^{2}+y^{2}=1$. Which of the following points does not exist on the unit circle?
A. $(-1,0)$
B. $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
C. $(0.5,0.5)$
D. $(0.6,0.8)$
13. The exact value of $\sin \frac{13 \pi}{6}$ is:
A. $-\frac{1}{2}$
B. $\frac{1}{2}$
C. $\frac{\sqrt{2}}{2}$
D. $\frac{\sqrt{3}}{2}$
14. The exact value of $\cos ^{2}\left(-840^{\circ}\right)$ is:
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 0
D. 1
15. The exact value of $\sec \frac{3 \pi}{2}$ is:
A. -1
B. $-\frac{1}{2}$
C. 1
D. Undefined
16. The exact value of $\sin \left(-\frac{\pi}{3}\right)+\cos \left(\frac{5 \pi}{4}\right)$ is:
A. $\frac{-\sqrt{3}-\sqrt{2}}{2}$
B. $\frac{-\sqrt{3}+\sqrt{2}}{2}$
C. $\frac{\sqrt{3}-\sqrt{2}}{2}$
D. $\frac{\sqrt{6}}{2}$
17. The exact value of $\frac{2 \tan \frac{\pi}{6}}{1-\tan ^{2} \frac{\pi}{6}}$ is:
A. $-\sqrt{3}$
B. $-\frac{\sqrt{3}}{2}$
C. $\frac{1}{2}$
D. $\sqrt{3}$
18. The exact value of $-\tan ^{2}\left(\frac{617 \pi}{6}\right)$ is:
A. -1
B. $-\frac{1}{3}$
C. $\frac{1}{3}$
D. Undefined
19. What is the arc length from point A to point B on the unit circle?

$$
P_{A}(\theta)=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)
$$

20. If $\cos \theta=\frac{3}{5}$ exists on the unit circle, $\sin \theta$ is equivalent to:
A. $-\frac{4}{5}$
B. $\frac{2}{5}$
C. $\frac{4}{5}$
D. $-\frac{4}{5}$ or $\frac{4}{5}$
21. In a video game, the graphic of a butterfly needs to be rotated. To make the butterfly graphic rotate, the programmer uses the equations:

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta \\
& y^{\prime}=x \sin \theta+y \cos \theta
\end{aligned}
$$

to transform each pixel of the graphic from its original coordinates, (x, y), to its new coordinates, (x^{\prime}, y^{\prime}). Pixels may have positive or negative coordinates.

If a particular pixel with coordinates of $(250,100)$ is rotated by $\frac{\pi}{6}$, the new coordinates are:
A. $(-38,267)$
B. $(38,267)$
C. $(167,212)$
D. $(167,303)$
22. From the observation deck of the Calgary Tower, an observer has to tilt their head θ_{A} down to see point A, and θ_{B} down to see point B. Using basic trigonometry, one can derive the equation:

$$
\frac{\mathrm{h}}{\tan \theta_{\mathrm{A}}}=\frac{\mathrm{h}+\mathrm{x} \tan \theta_{\mathrm{B}}}{\tan \theta_{\mathrm{B}}}
$$

The height of the observation deck is:
A. $h=x\left(\cot \theta_{A}-\cot \theta_{B}\right)$
B. $h=\frac{x}{\cot \theta_{A}-\cot \theta_{B}}$
C. $\mathrm{h}=\mathrm{x}\left(\tan \theta_{\mathrm{A}}-\tan \theta_{\mathrm{B}}\right)$
D. $h=\frac{x}{\tan \theta_{A}-\tan \theta_{B}}$
23. The points in the grid are located at:
A. $(-5,3),(-1,-4),(7,1)$
B. $\left(-\frac{5 \pi}{6}, 3\right),\left(-\frac{\pi}{6},-4\right),\left(\frac{7 \pi}{6}, 1\right)$
C. $\left(-\frac{2 \pi}{3}, 3\right),\left(-\frac{\pi}{6},-4\right),\left(\frac{4 \pi}{3}, 1\right)$
D. $\left(-\frac{3 \pi}{4}, 3\right),\left(-\frac{\pi}{4},-4\right),\left(\frac{5 \pi}{4}, 1\right)$

24. The graph of $y=\cos \theta$ has:
A. θ-intercepts at $\theta=\frac{\pi}{2}+n \pi, n \in I$.
B. A y-intercept at $(0,1)$.
C. A range of $-1 \leq y \leq 1$.
D. All of the above.
25. The graph of $y=\tan \theta$ has:
A. An amplitude of 1.
B. A period of 2π.
C. Vertical asymptotes at $\theta=n \pi, n \in I$.
D. Vertical asymptotes at $\theta=\frac{\pi}{2}+n \pi, n \in I$.
26. The range of $y=\frac{1}{2} \cos \theta-\frac{1}{2}$ is:
A. $\left\{y \left\lvert\,-\frac{1}{2} \leq y \leq \frac{1}{2}\right., y \in R\right\}$
B. $\left\{y \left\lvert\,-\frac{1}{2} \leq y \leq 0\right., y \in R\right\}$
C. $\{y \mid-1 \leq y \leq 0, y \in R\}$
D. $\{y \mid-1 \leq y \leq 1, y \in R\}$
27. The number of θ-intercepts in $y=\sin 3 \theta$, over the domain $0 \leq \theta \leq 2 \pi$ is:
A. 1
B. 3
C. 6
D. 7
28. The trigonometric function corresponding to the graph is:
A. $y=\cos (4 \theta)$
B. $y=\cos (8 \theta)$
C. $y=\cos \left(\frac{1}{4} \theta\right)$

D. $y=\cos \left(\frac{1}{8} \theta\right)$
29. The trigonometric function corresponding to the graph is:
A. $y=\frac{1}{2} \sin \left(\frac{1}{2} \theta\right)+\frac{1}{2}$
B. $y=\sin \left(\frac{1}{2} \theta\right)+\frac{3}{4}$
C. $y=-\cos \theta+\frac{1}{2}$

D. $y=-\frac{1}{2} \cos \theta+1$
30. The graph of $y=-\frac{1}{2} \sin (2 \theta-3 \pi)+1$ is:
A. Shifted horizontally $\frac{3 \pi}{2}$ units to the right.
B. Shifted horizontally $\frac{2 \pi}{3}$ units to the right.
C. Shifted horizontally 3π units to the right.
D. Shifted horizontally 6π units to the right.
31. The trigonometric function corresponding to the graph is:
A. $y=\cos \theta$
B. $y=\cos \left(\frac{1}{2} \theta\right)$
C. $y=\cos \left[2\left(\theta+\frac{\pi}{4}\right)\right]$

D. $y=\sin \left[2\left(\theta+\frac{\pi}{4}\right)\right]$
32. The trigonometric function corresponding to the graph is:
A. $y=-\cos \theta-12$
B. $y=-2 \cos \theta-2$
C. $y=-4 \cos 2 \theta-8$
D. $y=4 \sin \left(\theta-\frac{\pi}{4}\right)-8$

33. The trigonometric function $h(t)=\cos \left[\frac{\pi}{30}(\mathrm{t}-15)\right]$ represents the height of an object (in metres)
as a function of time (in seconds).

The period (P) and phase shift (c) are:
A. $P=\frac{1}{15} \mathrm{~s}, \mathrm{c}=15 \mathrm{~s}$
B. $P=15 \pi^{\circ}, \mathrm{C}=15^{\circ}$
C. $P=30 \mathrm{~s}, \mathrm{C}=-15 \mathrm{~s}$
D. $P=60 \mathrm{~s}, \mathrm{c}=15 \mathrm{~s}$
34. The optimal view window for the trigonometric function $f(x)=13.5 \cos \frac{2 \pi}{96}(x-24)+6.5$ is:
A. $x:[-40,60,10] ; y:[-2,14,2]$
B. $x:[-24,96,2] ; y:[-12,8,2]$
C. $x:[0,120,10] ; y:[-8,20,2]$
D. $x:[0,400,100] ; y:[6.5,20,1]$
35. The trigonometric function corresponding to the graph is:
A. $y=3 \sin \left[\frac{1}{4}(x+2)\right]-2$
B. $y=3 \sin \left[\frac{1}{4}(x-2)\right]-2$
C. $y=3 \sin \left[\frac{\pi}{4}(x+2)\right]-2$
D. $y=3 \sin \left[\frac{\pi}{4}(x-2)\right]-2$

36. The range of $f(\theta)=k \sin \left(\theta-\frac{\pi}{4}\right)-3$ is:
A. $-3+\mathrm{k} \leq \mathrm{y} \leq 3+\mathrm{k}$
B. $-3-k \leq y \leq-3+k$
C. $3-\mathrm{k} \leq \mathrm{y} \leq-3+\mathrm{k}$
D. $3-k \leq y \leq-3-k$
37. If the range of $y=3 \cos \theta+d$ is $[-4, k]$, the values of d and k are:
A. $d=-1 ; k=2$
B. $d=-1 ; k=-2$
C. $d=1 ; k=2$
D. $d=1 ; k=-2$
38. The graphs of $f(\theta)=\cos (2 \theta)$ and $g(\theta)=\sin (2 \theta)$ intersect at the points $\left(\frac{\pi}{8}, \frac{\sqrt{2}}{2}\right)$ and $\left(\frac{5 \pi}{8}, \frac{-\sqrt{2}}{2}\right)$. If the amplitude of each graph is quadrupled, the new points of intersection are:
A. $\left(\frac{\pi}{8}, 4\right),\left(\frac{5 \pi}{8},-4\right)$
B. $\left(\frac{\pi}{2}, \frac{\sqrt{2}}{2}\right),\left(\frac{5 \pi}{2},-\frac{\sqrt{2}}{2}\right)$
C. $\left(\frac{\pi}{8}, 2 \sqrt{2}\right),\left(\frac{5 \pi}{8},-2 \sqrt{2}\right)$
D. $\left(\frac{\pi}{8}, \frac{\sqrt{8}}{2}\right),\left(\frac{5 \pi}{8},-\frac{\sqrt{8}}{2}\right)$
39. If the point $\left(\frac{\pi}{2},-2\right)$ exists on the graph of $f(\theta)=\operatorname{acos}\left(\theta-\frac{\pi}{4}\right)-4$, the value of a is:
A. $\sqrt{2}$
B. 2
C. $2 \sqrt{2}$
D. 3
40. The y-intercept of $f(\theta)=-3 \cos \left(k \theta+\frac{\pi}{2}\right)-b$ is:
A. $(0,-3-b)$
B. $(0,3-b)$
C. $(0,-b)$
D. $(0, b)$
41. The oscillation of a mass on a spring can be modeled with the trigonometric function:

$$
h(t)=-1.2 \sin (2 \pi t)+4
$$

In one oscillation, the mass is lower than 3.2 m for a duration of:
A. 0.12 s
B. 0.26 s
C. 0.38 s
D. 0.60 s
42. A Ferris wheel with a radius of 15 m rotates once every 100 seconds. Riders board the Ferris wheel using a platform 1 m above the ground. The trigonometric function that gives the height of the rider as a function of time is:
A. $h(t)=-15 \cos \left(\frac{\pi}{100} t\right)+16$
B. $h(t)=15 \cos \left(\frac{\pi}{100} t\right)+1$
C. $h(t)=-15 \cos \left(\frac{\pi}{50} t\right)+16$
D. $h(t)=15 \cos \left(\frac{\pi}{50} t\right)+16$
43. The following table shows the number of daylight hours in Grande Prairie over the course of one year. The data has been converted to day numbers (January 1 is day zero) and decimal hours so it can be graphed.

Day Number	December 21 (Day -11)	March 21 (Day 79)	June 21 (Day 171)	September 21 (Day 263)	December 21 (Day 354)
Daylight Hours $6 \mathrm{6h}, \mathbf{4 6 m}(6.77 \mathrm{~h})$	$\mathbf{1 2 h}, 17 \mathrm{~m}(12.28 \mathrm{~h})$	$17 \mathrm{~h}, \mathbf{4 9 m}=(17.82 \mathrm{~h})$	$\mathbf{1 2 h}, 17 \mathrm{~m}(12.28 \mathrm{~h})$	$\mathbf{6 h}, \mathbf{4 6 m}(6.77 \mathrm{~h})$	

The trigonometric function that gives the number of daylight hours as a function of day number is:
A. $d(n)=12.295 \cos \left[\frac{2 \pi}{365}(n-11)\right]+5.525$
B. $d(n)=-12.295 \cos \left[\frac{2 \pi}{365}(n-11)\right]+5.525$
C. $d(n)=5.525 \cos \left[\frac{2 \pi}{365}(n+11)\right]+12.295$
D. $d(n)=-5.525 \cos \left[\frac{2 \pi}{365}(n+11)\right]+12.295$

Trigonometry One Practice Exam - ANSWER KEY Video solutions are in italics.

1. D Degrees and Radians, Example 3b
2. C Degrees and Radians, Example 5e
3. A Degrees and Radians, Example 6c
4. C Degrees and Radians, Example 7a
5. D Degrees and Radians, Example 8d
6. A Degrees and Radians, Example 9b
7. D Degrees and Radians, Example 12b (ii)
8. A Degrees and Radians, Example 14a
9. B Degrees and Radians, Example 16b
10. B Degrees and Radians, Example 17a
11. B Degrees and Radians, Example 19a
12. C The Unit Circle, Example 1b
13. B The Unit Circle, Example 4c
14. A The Unit Circle, Example $4 g$
15. D The Unit Circle, Example 8b
16. A The Unit Circle, Example 9a
17. D The Unit Circle, Example 10c
18. B The Unit Circle, Example 11b
19. C The Unit Circle, Example 14d
20. D The Unit Circle, Example 15d
21. C The Unit Circle, Example 17a
22. B The Unit Circle, Example 18a
23. B Trigonometric Functions I, Example 1a
24. D Trigonometric Functions I, Example 3
25. D Trigonometric Functions I, Example 4
26. C Trigonometric Functions I, Example 7d
27. D Trigonometric Functions I, Example 9b
28. B Trigonometric Functions I, Example 11a
29. A Trigonometric Functions I, Example 11d
30. A Trigonometric Functions I, Example 13c
31. D Trigonometric Functions I, Example 14b
32. C Trigonometric Functions I, Example 16b
33. D Trigonometric Functions II, Example 2a
34. C Trigonometric Functions II, Example 4a
35. C Trigonometric Functions II, Example 5b
36. B Trigonometric Functions II, Example 6b
37. A Trigonometric Functions II, Example 6c
38. C Trigonometric Functions II, Example $6 e$
39. C Trigonometric Functions II, Example 7a
40. C Trigonometric Functions II, Example 7b
41. B Trigonometric Functions II, Example 11d
42. C Trigonometric Functions II, Example 12b
43. D Trigonometric Functions II, Example 13c

Math 30-1 Practice Exam: Tips for Students

- Every question in the practice exam has already been covered in the Math 30-1 workbook. It is recommended that students refrain from looking at the practice exam until they have completed their studies for the unit.
- Do not guess on a practice exam. The practice exam is a self-diagnostic tool that can be used to identify knowledge gaps. Leave the answer blank and study the solution later.

