Math 30-1: Trigonometry Two PRACTICE EXAM

1. The general solution of $\tan \theta=0$ is:
A. $\theta=\frac{\pi}{4}+n \pi, n \in I$
B. $\theta=\frac{\pi}{4}+n\left(\frac{\pi}{2}\right), n \in I$
C. $\theta=\frac{\pi}{2}+n \pi, n \in I$
D. $\theta=n \pi, n \in I$
2. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\cos \theta=2$ has:
A. Solutions at $\theta=\frac{\pi}{3}, \frac{5 \pi}{3}$.
B. Solutions at $\theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}$.
C. Solutions at $(0,2),(\pi, 2)$, and $(2 \pi, 2)$.
D. No solution. The graph of $y=\cos \theta$ and the graph of $y=2$ have no point of intersection.
3. The general solution of $\cos \theta=-\frac{\sqrt{3}}{2}$ is:
A. $\theta=30^{\circ}+\mathrm{n}\left(360^{\circ}\right)$ and $\theta=150^{\circ}+\mathrm{n}\left(360^{\circ}\right), \mathrm{n} \in \mathrm{I}$
B. $\theta=150^{\circ}+\mathrm{n}\left(360^{\circ}\right)$ and $\theta=210^{\circ}+\mathrm{n}\left(360^{\circ}\right), \mathrm{n} \in \mathrm{I}$
C. $\theta=150^{\circ}+\mathrm{n}\left(360^{\circ}\right)$ and $\theta=330^{\circ}+\mathrm{n}\left(360^{\circ}\right), \mathrm{n} \in \mathrm{I}$
D. $\theta=150^{\circ}+n\left(180^{\circ}\right), n \in I$
4. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\cos \theta=\frac{1}{2}$ has:
A. No solution.
B. Solutions at the θ-intercepts of $y=2 \cos \theta-1$.
C. The solutions $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$.
D. The solutions $\theta=\frac{2 \pi}{3}, \frac{5 \pi}{3}$.
5. Which of the following techniques cannot be used to solve $\sin \theta=-0.30$?
A. Solving with the $\sin ^{-1}$ feature of a calculator.
B. Finding angles on the unit circle.
C. Finding point(s) of intersection.
D. Finding θ-intercepts.
6. The general solution of $\sec \theta=-2$ is:
A. $\theta=\frac{5 \pi}{6}+n(2 \pi)$ and $\theta=\frac{7 \pi}{6}+n(2 \pi), n \in I$
B. $\theta=\frac{\pi}{3}+n(2 \pi)$ and $\theta=\frac{2 \pi}{3}+n(2 \pi), n \in I$
C. $\theta=\frac{2 \pi}{3}+n(2 \pi)$ and $\theta=\frac{4 \pi}{3}+n(2 \pi), n \in I$
D. No solution.
7. $\csc \theta$ is undefined at:
A. $\theta=\frac{\pi}{4}+n\left(\frac{\pi}{2}\right), n \in I$
B. $\theta=\frac{\pi}{2}+n \pi, n \in I$
C. $\theta=n \pi, n \in I$
D. $\theta=\mathrm{n}(2 \pi), \mathrm{n} \in \mathrm{I}$
8. Over the domain $0^{\circ} \leq \theta \leq 360^{\circ}$, the equation $\sec \theta=-2.3662$ has solutions of:
A. $\theta=115^{\circ}, 245^{\circ}$
B. $\theta=120^{\circ}, 240^{\circ}$
C. $\theta=125^{\circ}, 235^{\circ}$
D. $\theta=130^{\circ}, 230^{\circ}$
9. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $2 \sin \theta \cos \theta=\cos \theta$ has solutions of:
A. $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$
B. $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}$
C. $\theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
D. $\theta=\frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{2}$
10. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $2 \cos ^{2} \theta=\cos \theta$ has solutions of:
A. $\theta=\frac{\pi}{3}, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{3}$
B. $\theta=\frac{\pi}{3}, \frac{5 \pi}{3}$
C. $\theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}$
D. $\theta=0, \pi, 2 \pi$
11. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\tan ^{4} \theta-\tan ^{2} \theta=0$ has solutions of:
A. $\theta=\frac{\pi}{2}, \frac{3 \pi}{2}$
B. $\theta=0, \pi, 2 \pi$
C. $\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
D. $\theta=0, \frac{\pi}{4}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{7 \pi}{4}, 2 \pi$
12. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $2 \sin ^{2} \theta-\sin \theta-1=0$ has solutions of:
A. $\theta=0, \pi, 2 \pi$
B. $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$
C. $\theta=\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
D. $\theta=\frac{\pi}{4}, \frac{5 \pi}{4}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
13. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\csc ^{2} \theta-3 \csc \theta+2=0$ has solutions of:
A. $\theta=\pi$
B. $\theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}$
C. $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}$
D. $\theta=0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi$
14. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $2 \sin ^{3} \theta-5 \sin ^{2} \theta+2 \sin \theta=0$ has solutions of:
A. $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$
B. $\theta=0, \pi, 2 \pi$
C. $\theta=0, \frac{\pi}{6}, \frac{5 \pi}{6}, \pi, 2 \pi$
D. $\theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
15. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\sin 2 \theta=-\frac{\sqrt{3}}{2}$ has solutions of:
A. $\theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}$
B. $\theta=\frac{4 \pi}{3}, \frac{5 \pi}{3}$
C. $\theta=\frac{2 \pi}{3}, \frac{5 \pi}{6}, \frac{5 \pi}{3}, \frac{11 \pi}{6}$
D. $\theta=\frac{7 \pi}{6}, \frac{4 \pi}{3}, \frac{5 \pi}{3}, \frac{11 \pi}{6}$
16. Over the domain $0 \leq \theta \leq 8 \pi$, the equation $\sin \frac{1}{4} \theta=-1$ has a solution of:
A. $\theta=\frac{3 \pi}{2}$
B. $\theta=\frac{3 \pi}{8}$
C. $\theta=4 \pi$
D. $\theta=6 \pi$
17. It takes the moon approximately 28 days to go through all of its phases.

On day zero, the visibility ratio is $0(0 \%)$.
On day 14 , the visibility ratio is 1 (100\%).
On day 28 , the visibility ratio is $0(0 \%)$.
The days on which the visibility ratio of the moon's surface is $0.60(60 \%)$ can be found by solving the trigonometric equation:
A. $0.40=-0.50 \cos \left(\frac{\pi}{14} t\right)+0.50$
B. $0.60=-0.50 \cos \left(\frac{\pi}{14} t\right)+0.50$
C. $0.60=0.50 \cos \left(\frac{\pi}{14} t\right)+0.50$
D. $0.60=\cos \left(\frac{\pi}{14} t\right)$
18. A rotating sprinkler is positioned 4 m away from the wall of a house. The wall is 8 m long. As the sprinkler rotates, the stream of water splashes the house d meters from point P.
Note: North of point P is a positive distance, and south of point P is a negative distance.

If the water splashes the wall 2 m north of point P, the angle of rotation can be found by finding the
 intersection point of the functions:
A. $y=4 \tan \theta$ and $y=2$, where $\theta \varepsilon R$.
B. $y=4 \tan \theta$ and $y=2$, where $0 \leq \theta \leq \frac{\pi}{4}$.
C. $y=8 \tan \theta$ and $y=2$, where $\theta \varepsilon R$.
D. $y=8 \tan \theta$ and $y=2$, where $0 \leq \theta \leq \frac{\pi}{4}$.
19. Which trigonometric equation can be classified as a trigonometric identity?
A. $\sin x=-\frac{1}{2}$
B. $\tan x=1$
C. $\csc x=\frac{1}{\sin x}$
D. $\sec x=$ undefined
20. The expression $\cot x \sin x \sec x$ is equivalent to:
A. 1, with no domain restrictions.
B. 1, with the domain restriction $x \neq \frac{n \pi}{2}$.
C. $\sin x$, with no domain restrictions.
D. $\cos x$, with the domain restriction $x \neq n \pi$.
21. The expression $\frac{\sin x \sec x}{\cot x}$ is equivalent to:
A. 1, with no domain restrictions.
B. $\tan x$, with the domain restriction $x \neq \frac{n \pi}{2}$.
C. $\tan ^{2} x$, with the domain restriction $x \neq \frac{n \pi}{2}$.
D. $\tan ^{2} x$, with the domain restriction $x \neq n \pi$.
22. The expression $\cos x-\cos ^{3} x$ is equivalent to:
A. $\sin ^{3} x$, with no domain restrictions.
B. $\cos ^{2} x$, with no domain restrictions.
C. $\cos x \sin ^{2} x$, with no domain restrictions.
D. $\cos ^{2} x \sin ^{2} x$, with no domain restrictions.
23. The expression $\frac{\sec ^{2} x-1}{1+\tan ^{2} x}$ is equivalent to:
A. $\sin x$, with no domain restrictions.
B. $\sin ^{2} x$, with the domain restriction $x \neq n \pi$.
C. $\sin ^{2} x$, with the domain restriction $x \neq \frac{n \pi}{2}$.
D. $\sin ^{2} x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
24. The expression $\frac{\sin ^{2} x}{1-\cos x}$ is equivalent to:
A. $1+\cos x$, with the domain restriction $x \neq n(2 \pi)$.
B. $1+\cos x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
C. $1-\cos x$, with the domain restriction $x \neq n(2 \pi)$.
D. $1-\cos x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
25. The expression $1+\sec x$ is equivalent to:
A. $\frac{\cos x+1}{\cos x}$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
B. $\frac{\cos x+1}{\cos x}$, with the domain restriction $x \neq \frac{n \pi}{2}$.
C. $\frac{\sin x+1}{\sin x}$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
D. $\frac{\sin x+1}{\sin x}$, with the domain restriction $x \neq \frac{n \pi}{2}$.
26. The expression $\cot x+\tan x$ is equivalent to:
A. $\sec x \csc x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
B. $\sec x \csc x$, with the domain restriction $x \neq \frac{n \pi}{2}$.
C. $\cos x \sin x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
D. $\cos x \sin x$, with the domain restriction $x \neq \frac{n \pi}{2}$.
27. The expression $\frac{\cos x}{1+\sin x}+\frac{\cos x}{1-\sin x}$ is equivalent to:
A. $2 \cos x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
B. $2 \sin x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
C. $2 \sec x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
D. $2 \csc x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
28. The expression $\frac{\cos x}{1-\sin x}$ is equivalent to:
A. $\frac{1+\sin x}{\cos x}$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
B. $\frac{1+\sin x}{\cos x}$, with the domain restriction $x \neq n \pi$.
C. $\frac{1-\sin x}{\cos x}$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
D. $\frac{1-\sin x}{\cos x}$, with the domain restriction $x \neq n \pi$.
29. The expression $\sin ^{4} x-\cos ^{4} x$ is equivalent to:
A. $2 \sin ^{2} x-1$, with no domain restrictions.
B. 1-2 $\sin ^{2} x$, with no domain restrictions.
C. $2 \cos ^{2} x-1$, with no domain restrictions.
D. 1-2 $\cos ^{2} x$, with no domain restrictions.
30. The expression $\frac{1}{5} \sin ^{2} x+\frac{1}{5} \cos ^{2} x$ is equivalent to:
A. $\frac{1}{25}$, with no domain restrictions.
B. $\frac{1}{5}$, with no domain restrictions.
C. $\frac{2}{5}$, with no domain restrictions.
D. 5 , with no domain restrictions.
31. The false statement regarding $\sin x=\tan x \cos x$ is:
A. The left side and right side are equal algebraically.
B. The left side and right side are equal when $x=\frac{\pi}{3}$.
C. The left side and right side have the same non-permissible values.
D. The graph of $y=\sin x$ is continuous but the graph of $y=\tan x \cos x$ has holes.
32. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $2 \sin ^{2} x-\cos x-1=0$ has solutions of:
A. $x=\frac{\pi}{6}, \frac{5 \pi}{6}$
B. $x=\frac{\pi}{3}, \pi, \frac{5 \pi}{3}$
C. $x=\frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}$
D. $x=\frac{4 \pi}{3}, \pi, \frac{5 \pi}{3}$
33. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $3-3 \csc x+\cot ^{2} x=0$ has solutions of:
A. $x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}$
B. $x=\frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6}$
C. $x=\frac{\pi}{3}, \frac{\pi}{2}, \frac{5 \pi}{3}$
D. $x=\frac{4 \pi}{3}, \frac{3 \pi}{2}, \frac{5 \pi}{3}$
34. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $2 \sec ^{2} x-\tan ^{4} x=-1$ has solutions of:
A. $x=\frac{4 \pi}{3}, \frac{5 \pi}{3}$
B. $x=\frac{7 \pi}{6}, \frac{11 \pi}{6}$
C. $x=\frac{\pi}{6}, \frac{\pi}{3}, \frac{2 \pi}{3}, \frac{5 \pi}{6}$
D. $x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
35. If the value of $\sin x=\frac{4}{7}, 0 \leq x \leq \frac{\pi}{2}$, the value of $\cos x$ within the same domain is:
A. $\cos x=-\frac{1}{2}$
B. $\cos x=-\frac{4}{7}$
C. $\cos x=\frac{7}{4}$
D. $\cos x=\frac{\sqrt{33}}{7}$
36. Using the triangle to the right, the expression $\frac{\sqrt{9-b^{2}}}{b^{2}}$ can be rewritten as:
A. $\frac{\cos \theta}{3 \sin ^{2} \theta}$
B. $\frac{\sin \theta}{3 \cos ^{2} \theta}$
C. $\frac{3 \cos ^{2} \theta}{\sin \theta}$
D. $\frac{3 \sin ^{2} \theta}{\cos \theta}$

a $b=3 \sin \theta$
37. The exact value of $\sin \left(\frac{\pi}{2}-\frac{\pi}{6}\right)$ is:
A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1+\sqrt{3}}{2}$
D. $\frac{1-\sqrt{3}}{2}$
38. A trigonometric expression equivalent to $\frac{\tan \frac{\pi}{4}-\tan \frac{\pi}{6}}{1+\tan \frac{\pi}{4} \tan \frac{\pi}{6}}$ is:
A. $\tan \left(\frac{\pi}{12}\right)$
B. $\tan \left(\frac{\pi}{6}\right)$
C. $\tan \left(\frac{\pi}{3}\right)$
D. $\tan \left(-\frac{\pi}{3}\right)$
39. The exact value of $\sin \left(\frac{5 \pi}{12}\right)$ is:
A. $\frac{\sqrt{6}+\sqrt{2}}{4}$
B. $\frac{\sqrt{6}-\sqrt{2}}{4}$
C. $\frac{\sqrt{6}}{2}$
D. $\sqrt{3}$
40. $\sin x$ is equivalent to the expression:
A. $1-2 \sin ^{2}\left(\frac{1}{4} x\right)$
B. $\cos ^{2} x-\sin ^{2} x$
C. $2 \sin \left(\frac{1}{2} x\right) \cos \left(\frac{1}{2} x\right)$
D. $-\cos x$
41. The expression $\cos 2 x+2 \sin ^{2} x$ is equivalent to:
A. 1
B. $\sin x$
C. $\cos ^{2} x$
D. $\frac{1}{2} \tan 2 x$
42. The expression $\cos ^{4} x-\sin ^{4} x$ is equivalent to:
A. $\sin ^{2} x$
B. $\cos ^{2} x$
C. $\cos 2 x$
D. $\sin 2 x$
43. The expression $\sin 3 x$ is equivalent to:
A. $\sin ^{2}(2 x)$
B. $\sin (2 x) \cos x$
C. $\sin (2 x) \sin x$
D. $3 \sin x-4 \sin ^{3} x$
44. The expression $\cos 34^{\circ} \cos 41^{\circ}-\sin 34^{\circ} \sin 41^{\circ}$ is equivalent to:
A. $\frac{\sqrt{6}-\sqrt{2}}{4}$
B. $\frac{\sqrt{6}+\sqrt{2}}{4}$
C. $\sqrt{2}$
D. $\sqrt{3}$
45. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\cos 2 x=\cos ^{2} x$ has solutions of:
A. $x=\frac{\pi}{6}, \frac{5 \pi}{6}$
B. $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
C. $x=\frac{\pi}{2}, \frac{3 \pi}{2}$
D. $x=0, \pi, 2 \pi$
46. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\sin x \cos x=\frac{1}{4}$ has solutions of:
A. $x=\frac{\pi}{12}, \frac{5 \pi}{12}$
B. $x=\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{13 \pi}{12}, \frac{17 \pi}{12}$
C. $x=\frac{\pi}{2}, \frac{3 \pi}{2}$
D. $x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
47. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\cos 2 x-\cos x=0$ has solutions of:
A. $x=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}, 2 \pi$
B. $x=0, \frac{4 \pi}{3}, \frac{5 \pi}{3}, 2 \pi$
C. $x=\frac{\pi}{2}, \frac{3 \pi}{4}, \frac{5 \pi}{4}$
D. $x=\frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}$
48. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\cos (x+\pi)-\cos ^{2} x=0$ has solutions of:
A. $x=0, \pi, 2 \pi$
B. $x=\frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}$
C. $x=\frac{\pi}{2}, \pi, \frac{3 \pi}{2}$
D. $x=\frac{5 \pi}{4}$
49. If a cannon shoots a cannonball θ degrees above the horizontal, the horizontal distance traveled by the cannonball before it hits the ground can be found with the function:

If the initial velocity of the cannonball is $36 \mathrm{~m} / \mathrm{s}$, the function can be rewritten as:
A. $d(\theta)=\frac{36}{4.9} \sin 2 \theta$
B. $d(\theta)=\frac{36}{9.8} \cos 2 \theta$
C. $d(\theta)=\frac{1296}{9.8} \sin 2 \theta$
D. $d(\theta)=\frac{1296}{9.8} \cos 2 \theta$
50. An engineer is planning the construction of a road through a tunnel. In one possible design, the width of the road maximizes the area of a rectangle inscribed within the cross-section of the tunnel.

The angle of elevation from the centre line of the road to the upper corner of the rectangle is θ. Sidewalks on either side of the road are included
 in the design. The area of the rectangle is:

$$
A(\theta)=4900 \sin (2 \theta)
$$

The angle that maximizes the area of the rectangle and the corresponding road width are:
A. Angle $=30^{\circ}$; Road Width $=35 \sqrt{3} \mathrm{~m}$.
B. Angle $=30^{\circ}$; Road Width $=70 \sqrt{3} \mathrm{~m}$.
C. Angle $=45^{\circ}$; Road Width $=35 \sqrt{2} \mathrm{~m}$.
D. Angle $=45^{\circ}$; Road Width $=70 \sqrt{2} \mathrm{~m}$.

Trigonometry Two Practice Exam - ANSWER KEY Video solutions are in italics.

1. D Trigonometric Equations, Example 1c
2. D Trigonometric Equations, Example 2d
3. B Trigonometric Equations, Example 3b
4. B Trigonometric Equations, Example 4b
5. B Trigonometric Equations, Example 6
6. C Trigonometric Equations, Example 7a
7. C Trigonometric Equations, Example 8b
8. A Trigonometric Equations, Example 12
9. C Trigonometric Equations, Example 14a
10. A Trigonometric Equations, Example 15c
11. D Trigonometric Equations, Example 15d
12. C Trigonometric Equations, Example 16a
13. B Trigonometric Equations, Example 16b
14. C Trigonometric Equations, Example 16c
15. C Trigonometric Equations, Example 17a
16. D Trigonometric Equations, Example 18b
17. B Trigonometric Equations, Example 19
18. B Trigonometric Equations, Example 20
19. C Trigonometric Identities I, Example 1b
20. B Trigonometric Identities I, Example 3b
21. C Trigonometric Identities I, Example 4a
22. C Trigonometric Identities I, Example 5b
23. D Trigonometric Identities I, Example 6b
24. A Trigonometric Identities I, Example 6c
25. A Trigonometric Identities I, Example 7a
26. B Trigonometric Identities I, Example 7c
27. C Trigonometric Identities I, Example 8c
28. A Trigonometric Identities I, Example 8d
29. A Trigonometric Identities I, Example 9b
30. B Trigonometric Identities I, Example 10c
31. C Trigonometric Identities I, Example 12
32. B Trigonometric Identities I, Example 15a
33. A Trigonometric Identities I, Example 16a
34. D Trigonometric Identities I, Example 17a
35. D Trigonometric Identities I, Example 18a
36. A Trigonometric Identities I, Example 19a
37. B Trigonometric Identities II, Example 1b
38. A Trigonometric Identities II, Example 2b
39. A Trigonometric Identities II, Example 3b
40. C Trigonometric Identities II, Example 6b (iii)
41. A Trigonometric Identities II, Example 9a
42. C Trigonometric Identities II, Example 10a
43. D Trigonometric Identities II, Example 12d
44. A Trigonometric Identities II, Example 13c
45. D Trigonometric Identities II, Example 14a
46. B Trigonometric Identities II, Example 15d
47. A Trigonometric Identities II, Example 16a
48. C Trigonometric Identities II, Example 17d
49. C Trigonometric Identities II, Example 20a
50. D Trigonometric Identities II, Example 21 (b, c)

Math 30-1 Practice Exam: Tips for Students

- Every question in the practice exam has already been covered in the Math 30-1 workbook. It is recommended that students refrain from looking at the practice exam until they have completed their studies for the unit.
- Do not guess on a practice exam. The practice exam is a self-diagnostic tool that can be used to identify knowledge gaps. Leave the answer blank and study the solution later.

