1. The general solution of $tan\theta = 0$ is:

A.
$$\theta = \frac{\pi}{4} + n\pi, n \in I$$

B. $\theta = \frac{\pi}{4} + n\left(\frac{\pi}{2}\right), n \in I$
C. $\theta = \frac{\pi}{2} + n\pi, n \in I$
D. $\theta = n\pi, n \in I$

- **2.** Over the domain $0 \le \theta \le 2\pi$, the equation $\cos \theta = 2$ has:
 - **A.** Solutions at $\theta = \frac{\pi}{3}, \frac{5\pi}{3}$. **B.** Solutions at $\theta = \frac{2\pi}{3}, \frac{4\pi}{3}$.
 - C. Solutions at (0, 2), (π , 2), and (2π , 2).

D. No solution. The graph of $y = \cos\theta$ and the graph of y = 2 have no point of intersection.

- 3. The general solution of $\cos\theta = -\frac{\sqrt{3}}{2}$ is: A. $\theta = 30^{\circ} + n(360^{\circ})$ and $\theta = 150^{\circ} + n(360^{\circ})$, $n \in I$ B. $\theta = 150^{\circ} + n(360^{\circ})$ and $\theta = 210^{\circ} + n(360^{\circ})$, $n \in I$ C. $\theta = 150^{\circ} + n(360^{\circ})$ and $\theta = 330^{\circ} + n(360^{\circ})$, $n \in I$ D. $\theta = 150^{\circ} + n(180^{\circ})$, $n \in I$
- 4. Over the domain $0 \le \theta \le 2\pi$, the equation $\cos\theta = \frac{1}{2}$ has:
 - A. No solution.
 - **B.** Solutions at the θ -intercepts of $y = 2\cos\theta 1$.

C. The solutions
$$\theta = \frac{\pi}{6}, \frac{5\pi}{6}$$
.
D. The solutions $\theta = \frac{2\pi}{3}, \frac{5\pi}{3}$

- 5. Which of the following techniques cannot be used to solve $\sin\theta = -0.30$?
 - **A.** Solving with the sin⁻¹ feature of a calculator.
 - B. Finding angles on the unit circle.
 - **C.** Finding point(s) of intersection.
 - **D.** Finding θ -intercepts.

6. The general solution of $\sec\theta = -2$ is:

A.
$$\theta = \frac{5\pi}{6} + n(2\pi)$$
 and $\theta = \frac{7\pi}{6} + n(2\pi)$, $n \in I$
B. $\theta = \frac{\pi}{3} + n(2\pi)$ and $\theta = \frac{2\pi}{3} + n(2\pi)$, $n \in I$
C. $\theta = \frac{2\pi}{3} + n(2\pi)$ and $\theta = \frac{4\pi}{3} + n(2\pi)$, $n \in I$

D. No solution.

7. $csc\theta$ is undefined at:

A.
$$\theta = \frac{\pi}{4} + n\left(\frac{\pi}{2}\right), n \in I$$

B. $\theta = \frac{\pi}{2} + n\pi, n \in I$
C. $\theta = n\pi, n \in I$

D.
$$\theta = n(2\pi), n \in I$$

8. Over the domain $0^{\circ} \le \theta \le 360^{\circ}$, the equation sec $\theta = -2.3662$ has solutions of:

A. $\theta = 115^{\circ}, 245^{\circ}$ **B.** $\theta = 120^{\circ}, 240^{\circ}$ **C.** $\theta = 125^{\circ}, 235^{\circ}$ **D.** $\theta = 130^{\circ}, 230^{\circ}$ **9.** Over the domain $0 \le \theta \le 2\pi$, the equation $2\sin\theta\cos\theta = \cos\theta$ has solutions of:

A.
$$\theta = \frac{\pi}{6}, \frac{5\pi}{6}$$

B. $\theta = \frac{\pi}{3}, \frac{2\pi}{3}$
C. $\theta = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{3\pi}{2}$
D. $\theta = \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{2}$

10. Over the domain $0 \le \theta \le 2\pi$, the equation $2\cos^2\theta = \cos\theta$ has solutions of:

A.
$$\theta = \frac{\pi}{3}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{3}$$

B. $\theta = \frac{\pi}{3}, \frac{5\pi}{3}$
C. $\theta = \frac{2\pi}{3}, \frac{4\pi}{3}$
D. $\theta = 0, \pi, 2\pi$

11. Over the domain $0 \le \theta \le 2\pi$, the equation $\tan^4\theta - \tan^2\theta = 0$ has solutions of:

A. $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$ B. $\theta = 0, \pi, 2\pi$ C. $\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$ D. $\theta = 0, \frac{\pi}{4}, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}, \frac{7\pi}{4}, 2\pi$

12. Over the domain $0 \le \theta \le 2\pi$, the equation $2\sin^2\theta - \sin\theta - 1 = 0$ has solutions of:

A.
$$\theta = 0, \pi, 2\pi$$

B. $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$
C. $\theta = \frac{\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$
D. $\theta = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{4\pi}{3}, \frac{5\pi}{3}$

13. Over the domain $0 \le \theta \le 2\pi$, the equation $\csc^2\theta - 3\csc\theta + 2 = 0$ has solutions of:

A.
$$\theta = \pi$$

B. $\theta = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}$
C. $\theta = \frac{\pi}{3}, \frac{2\pi}{3}$
D. $\theta = 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi$

14. Over the domain $0 \le \theta \le 2\pi$, the equation $2\sin^3\theta - 5\sin^2\theta + 2\sin\theta = 0$ has solutions of:

A. $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$ B. $\theta = 0, \pi, 2\pi$ C. $\theta = 0, \frac{\pi}{6}, \frac{5\pi}{6}, \pi, 2\pi$ D. $\theta = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{3\pi}{2}$

15. Over the domain $0 \le \theta \le 2\pi$, the equation $\sin 2\theta = -\frac{\sqrt{3}}{2}$ has solutions of:

A.
$$\theta = \frac{2\pi}{3}, \frac{4\pi}{3}$$

B. $\theta = \frac{4\pi}{3}, \frac{5\pi}{3}$
C. $\theta = \frac{2\pi}{3}, \frac{5\pi}{6}, \frac{5\pi}{3}, \frac{11\pi}{6}$
D. $\theta = \frac{7\pi}{6}, \frac{4\pi}{3}, \frac{5\pi}{3}, \frac{11\pi}{6}$

16. Over the domain $0 \le \theta \le 8\pi$, the equation $\sin \frac{1}{4}\theta = -1$ has a solution of:

A. $\theta = \frac{3\pi}{2}$ B. $\theta = \frac{3\pi}{8}$ C. $\theta = 4\pi$

D. $\theta = 6\pi$

17. It takes the moon approximately 28 days to go through all of its phases.

On day zero, the visibility ratio is 0 (0%). On day 14, the visibility ratio is 1 (100%). On day 28, the visibility ratio is 0 (0%).

The days on which the visibility ratio of the moon's surface is 0.60 (60%) can be found by solving the trigonometric equation:

A.
$$0.40 = -0.50\cos\left(\frac{\pi}{14}t\right) + 0.50$$

B. $0.60 = -0.50\cos\left(\frac{\pi}{14}t\right) + 0.50$
C. $0.60 = 0.50\cos\left(\frac{\pi}{14}t\right) + 0.50$
D. $0.60 = \cos\left(\frac{\pi}{14}t\right)$

18. A rotating sprinkler is positioned 4 m away from the wall of a house. The wall is 8 m long. As the sprinkler rotates, the stream of water splashes the house d meters from point P. Note: North of point P is a positive distance, and south of point P is a negative distance.

If the water splashes the wall 2 m north of point P, the angle of rotation can be found by finding the intersection point of the functions:

A. $y = 4tan\theta$ and y = 2, where $\theta \in R$.

- **B.** $y = 4tan\theta$ and y = 2, where $0 \le \theta \le \frac{\pi}{4}$.
- **C.** $y = 8 \tan \theta$ and y = 2, where $\theta \in R$.
- **D.** y = 8tan θ and y = 2, where $0 \le \theta \le \frac{\pi}{4}$.

19. Which trigonometric equation can be classified as a trigonometric identity?

A.
$$\sin x = -\frac{1}{2}$$

B. $\tan x = 1$
C. $\csc x = \frac{1}{\sin x}$

D. sec x = undefined

20. The expression $\cot x \sin x \sec x$ is equivalent to:

A. 1, with no domain restrictions.

B. 1, with the domain restriction
$$x \neq \frac{n\pi}{2}$$
.

- **C.** sin *x*, with no domain restrictions.
- **D.** $\cos x$, with the domain restriction $x \neq n\pi$.

21. The expression $\frac{\sin x \sec x}{\cot x}$ is equivalent to:

- A. 1, with no domain restrictions.
- **B.** tan *x*, with the domain restriction $x \neq \frac{n\pi}{2}$.
- **C.** $\tan^2 x$, with the domain restriction $x \neq \frac{n\pi}{2}$.
- **D.** $\tan^2 x$, with the domain restriction $x \neq n\pi$.
- **22.** The expression $\cos x \cos^3 x$ is equivalent to:
 - A. $\sin^3 x$, with no domain restrictions.
 - **B.** $\cos^2 x$, with no domain restrictions.
 - **C.** $\cos x \sin^2 x$, with no domain restrictions.
 - **D.** $\cos^2 x \sin^2 x$, with no domain restrictions.

23. The expression $\frac{\sec^2 x - 1}{1 + \tan^2 x}$ is equivalent to:

- A. sin x, with no domain restrictions.
- **B.** $\sin^2 x$, with the domain restriction $x \neq n\pi$.
- C. $\sin^2 x$, with the domain restriction $x \neq \frac{n\pi}{2}$. D. $\sin^2 x$, with the domain restriction $x \neq \frac{\pi}{2} + n\pi$.

24. The expression $\frac{\sin^2 x}{1 - \cos x}$ is equivalent to:

A. 1+ cos x, with the domain restriction $x \neq n(2\pi)$.

- **B.** 1 + cos *x*, with the domain restriction $x \neq \frac{\pi}{2} + n\pi$.
- **C.** 1 cos x, with the domain restriction $x \neq n(2\pi)$.
- **D.** $1 \cos x$, with the domain restriction $x \neq \frac{\pi}{2} + n\pi$.

25. The expression $1 + \sec x$ is equivalent to:

- A. $\frac{\cos x + 1}{\cos x}$, with the domain restriction $x \neq \frac{\pi}{2} + n\pi$.
- **B.** $\frac{\cos x + 1}{\cos x}$, with the domain restriction $x \neq \frac{n\pi}{2}$.
- C. $\frac{\sin x + 1}{\sin x}$, with the domain restriction $x \neq \frac{\pi}{2} + n\pi$.
- D. $\frac{\sin x + 1}{\sin x}$, with the domain restriction $x \neq \frac{n\pi}{2}$.
- **26.** The expression $\cot x + \tan x$ is equivalent to:

A. sec x csc x, with the domain restriction $x \neq \frac{\pi}{2} + n\pi$. B. sec x csc x, with the domain restriction $x \neq \frac{n\pi}{2}$. C. cos x sin x, with the domain restriction $x \neq \frac{\pi}{2} + n\pi$.

D. $\cos x \sin x$, with the domain restriction $x \neq \frac{n\pi}{2}$.

27. The expression $\frac{\cos x}{1 + \sin x} + \frac{\cos x}{1 - \sin x}$ is equivalent to: A. $2\cos x$, with the domain restriction $x \neq \frac{\pi}{2} + n\pi$. B. $2\sin x$, with the domain restriction $x \neq \frac{\pi}{2} + n\pi$. C. $2\sec x$, with the domain restriction $x \neq \frac{\pi}{2} + n\pi$. D. $2\csc x$, with the domain restriction $x \neq \frac{\pi}{2} + n\pi$. 28. The expression $\frac{\cos x}{1 - \sin x}$ is equivalent to: A. $\frac{1 + \sin x}{\cos x}$, with the domain restriction $x \neq \frac{\pi}{2} + n\pi$.

- B. $\frac{1+\sin x}{\cos x}$, with the domain restriction $x \neq n\pi$.
- C. $\frac{1-\sin x}{\cos x}$, with the domain restriction $x \neq \frac{\pi}{2} + n\pi$.
- **D.** $\frac{1-\sin x}{\cos x}$, with the domain restriction $x \neq n\pi$.
- **29.** The expression $\sin^4 x \cos^4 x$ is equivalent to:
 - A. $2\sin^2 x 1$, with no domain restrictions.
 - **B.** $1-2\sin^2 x$, with no domain restrictions.
 - **C.** $2\cos^2 x 1$, with no domain restrictions.
 - **D.** $1-2\cos^2 x$, with no domain restrictions.
- 30. The expression $\frac{1}{5}\sin^2 x + \frac{1}{5}\cos^2 x$ is equivalent to: A. $\frac{1}{25}$, with no domain restrictions. B. $\frac{1}{5}$, with no domain restrictions. C. $\frac{2}{5}$, with no domain restrictions.
 - **D.** 5, with no domain restrictions.

- **31.** The false statement regarding sin x = tan x cos x is:
 - A. The left side and right side are equal algebraically.
 - **B.** The left side and right side are equal when $x = \frac{\pi}{3}$.
 - C. The left side and right side have the same non-permissible values.
 - **D.** The graph of y = sinx is continuous but the graph of y = tanxcosx has holes.
- **32.** Over the domain $0 \le \theta \le 2\pi$, the equation $2\sin^2 x \cos x 1 = 0$ has solutions of:

A.
$$x = \frac{\pi}{6}, \frac{5\pi}{6}$$

B. $x = \frac{\pi}{3}, \pi, \frac{5\pi}{3}$
C. $x = \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}$
D. $x = \frac{4\pi}{3}, \pi, \frac{5\pi}{3}$

33. Over the domain $0 \le \theta \le 2\pi$, the equation 3 - $3\csc x + \cot^2 x = 0$ has solutions of:

A.
$$x = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}$$

B. $x = \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}$
C. $x = \frac{\pi}{3}, \frac{\pi}{2}, \frac{5\pi}{3}$
D. $x = \frac{4\pi}{3}, \frac{3\pi}{2}, \frac{5\pi}{3}$

34. Over the domain $0 \le \theta \le 2\pi$, the equation $2\sec^2 x - \tan^4 x = -1$ has solutions of:

A.
$$x = \frac{4\pi}{3}, \frac{5\pi}{3}$$

B. $x = \frac{7\pi}{6}, \frac{11\pi}{6}$
C. $x = \frac{\pi}{6}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{6}$
D. $x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$

- **35.** If the value of $\sin x = \frac{4}{7}$, $0 \le x \le \frac{\pi}{2}$, the value of cosx within the same domain is:
 - A. $\cos x = -\frac{1}{2}$ B. $\cos x = -\frac{4}{7}$ C. $\cos x = \frac{7}{4}$ D. $\cos x = \frac{\sqrt{33}}{7}$

36. Using the triangle to the right, the expression $\frac{\sqrt{9-b^2}}{b^2}$ can be rewritten as:

- A. $\frac{\cos\theta}{3\sin^2\theta}$
- **B.** $\frac{\sin\theta}{3\cos^2\theta}$
- C. $\frac{3\cos^2\theta}{\sin\theta}$
- **D.** $\frac{3\sin^2\theta}{\cos\theta}$
- **37.** The exact value of $\sin\left(\frac{\pi}{2} \frac{\pi}{6}\right)$ is:

A.
$$\frac{1}{2}$$

B. $\frac{\sqrt{3}}{2}$
C. $\frac{1+\sqrt{3}}{2}$
D. $\frac{1-\sqrt{3}}{2}$

38. A trigonometric expression equivalent to $\frac{\tan\frac{\pi}{4} - \tan\frac{\pi}{6}}{1 + \tan\frac{\pi}{4}\tan\frac{\pi}{6}}$ is:

A.
$$tan\left(\frac{\pi}{12}\right)$$

B. $tan\left(\frac{\pi}{6}\right)$
C. $tan\left(\frac{\pi}{3}\right)$
D. $tan\left(-\frac{\pi}{3}\right)$

39. The exact value of $sin\left(\frac{5\pi}{12}\right)$ is:

A.
$$\frac{\sqrt{6} + \sqrt{2}}{4}$$

B. $\frac{\sqrt{6} - \sqrt{2}}{4}$
C. $\frac{\sqrt{6}}{2}$
D. $\sqrt{3}$

40. sin *x* is equivalent to the expression:

A. $1-2\sin^2\left(\frac{1}{4}x\right)$ B. $\cos^2 x - \sin^2 x$ C. $2\sin\left(\frac{1}{2}x\right)\cos\left(\frac{1}{2}x\right)$ D. $-\cos x$

- **41.** The expression $\cos 2x + 2\sin^2 x$ is equivalent to:
 - **A.** 1
 - **B.** sin *x*
 - **C.** $\cos^2 x$
 - D. $\frac{1}{2}$ tan2x
- **42.** The expression $\cos^4 x \sin^4 x$ is equivalent to:
 - A. $\sin^2 x$
 - **B.** $\cos^2 x$
 - **C.** cos2*x*
 - **D.** sin2x
- **43.** The expression $\sin 3x$ is equivalent to:
 - **A.** $sin^{2}(2x)$
 - **B.** sin(2x)cosx
 - C. sin(2x)sinx
 - **D.** $3\sin x 4\sin^3 x$

44. The expression $\cos 34^\circ \cos 41^\circ - \sin 34^\circ \sin 41^\circ$ is equivalent to:

A.
$$\frac{\sqrt{6} - \sqrt{2}}{4}$$

B. $\frac{\sqrt{6} + \sqrt{2}}{4}$
C. $\sqrt{2}$

D. $\sqrt{3}$

45. Over the domain $0 \le \theta \le 2\pi$, the equation $\cos 2x = \cos^2 x$ has solutions of:

A.
$$x = \frac{\pi}{6}, \frac{5\pi}{6}$$

B. $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$
C. $x = \frac{\pi}{2}, \frac{3\pi}{2}$

D. x = 0, π, 2π

46. Over the domain $0 \le \theta \le 2\pi$, the equation $\sin x \cos x = \frac{1}{4}$ has solutions of:

A.
$$x = \frac{\pi}{12}, \frac{5\pi}{12}$$

B. $x = \frac{\pi}{12}, \frac{5\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12}$
C. $x = \frac{\pi}{2}, \frac{3\pi}{2}$
D. $x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$

47. Over the domain $0 \le \theta \le 2\pi$, the equation $\cos 2x - \cos x = 0$ has solutions of:

A.
$$x = 0, \frac{2\pi}{3}, \frac{4\pi}{3}, 2\pi$$

B. $x = 0, \frac{4\pi}{3}, \frac{5\pi}{3}, 2\pi$
C. $x = \frac{\pi}{2}, \frac{3\pi}{4}, \frac{5\pi}{4}$
D. $x = \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}$

48. Over the domain $0 \le \theta \le 2\pi$, the equation $\cos(x + \pi) - \cos^2 x = 0$ has solutions of:

A.
$$x = 0, \pi, 2\pi$$

B. $x = \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}$
C. $x = \frac{\pi}{2}, \pi, \frac{3\pi}{2}$
D. $x = \frac{5\pi}{4}$

49. If a cannon shoots a cannonball θ degrees above the horizontal, the horizontal distance traveled by the cannonball before it hits the ground can be found with the function:

	<u> </u>	 	 _

$d(\theta) = \frac{v_i^2 \sin \theta \cos \theta}{4 \theta}$	
$u(v) = \frac{4.9}{4.9}$	

If the initial velocity of the cannonball is 36 m/s, the function can be rewritten as:

A.
$$d(\theta) = \frac{36}{4.9} \sin 2\theta$$

B. $d(\theta) = \frac{36}{9.8} \cos 2\theta$
C. $d(\theta) = \frac{1296}{9.8} \sin 2\theta$
D. $d(\theta) = \frac{1296}{9.8} \cos 2\theta$

50. An engineer is planning the construction of a road through a tunnel. In one possible design, the width of the road maximizes the area of a rectangle inscribed within the cross-section of the tunnel.

The angle of elevation from the centre line of the road to the upper corner of the rectangle is θ . Sidewalks on either side of the road are included in the design. The area of the rectangle is:

$$A(\theta) = 4900 \sin(2\theta)$$

The angle that maximizes the area of the rectangle and the corresponding road width are:

- **A.** Angle = 30° ; Road Width = $35\sqrt{3}$ m.
- **B.** Angle = 30° ; Road Width = $70\sqrt{3}$ m.
- **C.** Angle = 45° ; Road Width = $35\sqrt{2}$ m.
- **D.** Angle = 45° ; Road Width = $70\sqrt{2}$ m.

Trigonometry Two Practice Exam - ANSWER KEY Video solutions are in italics.

1. D	Trigonometric Equations, Example 1c
2. D	Trigonometric Equations, Example 2d
3. B	Trigonometric Equations, Example 3b
4. B	Trigonometric Equations, Example 4b
5. B	Trigonometric Equations, Example 6
6. C	Trigonometric Equations, Example 7a
7. C	Trigonometric Equations, Example 8b
8. A	Trigonometric Equations, Example 12
9. C	Trigonometric Equations, Example 14a
10. A	Trigonometric Equations, Example 15c
11. D	Trigonometric Equations, Example 15d
12. C	Trigonometric Equations, Example 16a
13. B	Trigonometric Equations, Example 16b
14. C	Trigonometric Equations, Example 16c
15. C	Trigonometric Equations, Example 17a
16. D	Trigonometric Equations, Example 18b
17. B	Trigonometric Equations, Example 19
18. B	Trigonometric Equations, Example 20
19. C	Trigonometric Identities I, Example 1b
20. B	Trigonometric Identities I, Example 3b
21. C	Trigonometric Identities I, Example 4a
22. C	Trigonometric Identities I, Example 5b
23. D	Trigonometric Identities I, Example 6b
24. A	Trigonometric Identities I, Example 6c
25. A	Trigonometric Identities I, Example 7a

26. B	Trigonometric Identities I, Example 7c
27. C	Trigonometric Identities I, Example 8c
28. A	Trigonometric Identities I, Example 8d
29. A	Trigonometric Identities I, Example 9b
30. B	Trigonometric Identities I, Example 10c
31. C	Trigonometric Identities I, Example 12
32. B	Trigonometric Identities I, Example 15a
33. A	Trigonometric Identities I, Example 16a
34. D	Trigonometric Identities I, Example 17a
35. D	Trigonometric Identities I, Example 18a
36. A	Trigonometric Identities I, Example 19a
37. B	Trigonometric Identities II, Example 1b
38. A	Trigonometric Identities II, Example 2b
39. A	Trigonometric Identities II, Example 3b
40. C	Trigonometric Identities II, Example 6b (iii)
41. A	Trigonometric Identities II, Example 9a
42. C	Trigonometric Identities II, Example 10a
43. D	Trigonometric Identities II, Example 12d
44. A	Trigonometric Identities II, Example 13c
45. D	Trigonometric Identities II, Example 14a
46. B	Trigonometric Identities II, Example 15d
47. A	Trigonometric Identities II, Example 16a
48. C	Trigonometric Identities II, Example 17d
49. C	Trigonometric Identities II, Example 20a

Math 30-1 Practice Exam: Tips for Students

• Every question in the practice exam has already been covered in the Math 30-1 workbook. It is recommended that students refrain from looking at the practice exam until they have completed their studies for the unit.

• Do not guess on a practice exam. The practice exam is a self-diagnostic tool that can be used to identify knowledge gaps. Leave the answer blank and study the solution later.