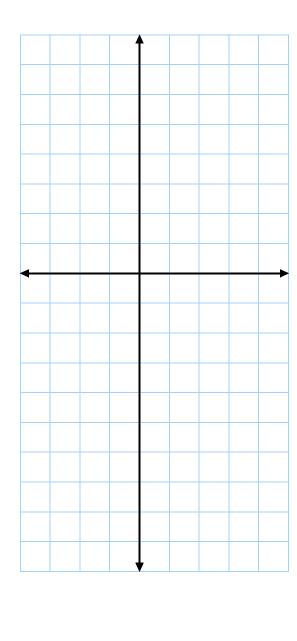
- Q. How can you sketch the graph of a parabola quickly?
- A. Find out where it crosses each axis.

Example $y = x^2 - 2x - 8$

On the y-axis x =____ so y =____

The graph crosses the y-axis at (_____, ___)

Factorise $y = x^2 - 2x - 8$


On the x-axis y =____

For y to have this value $x = \underline{\hspace{1cm}}$ or $x = \underline{\hspace{1cm}}$

The graph crosses the x-axis

at (_____, ____) and (_____, ____)

Mark the three points on the grid.

The parabola is symmetrical. Draw the line of symmetry.

The equation of the line of symmetry is ______

At the 'bottom' of the parabola y has its minimum value.

The co-ordinates of the minimum point are (_____, ____)

$$y = x^2 + 2x - 15$$

On the y-axis x =____ so y =____

The graph crosses the y-axis at (_____, ____)

Factorise $y = x^2 + 2x - 15$

On the x-axis y =____

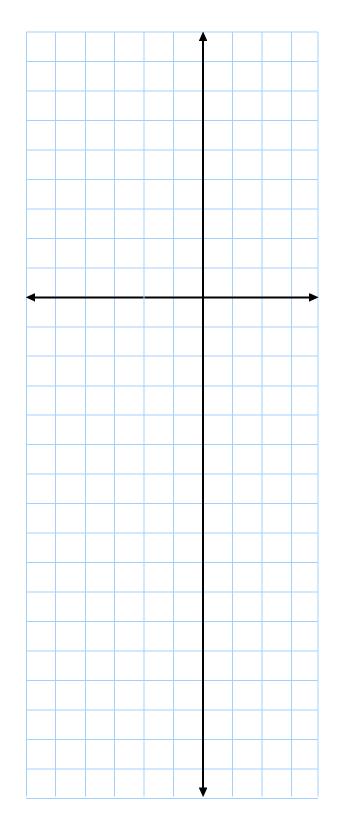
For y to have this value $x = \underline{\hspace{1cm}}$ or $x = \underline{\hspace{1cm}}$

The graph crosses the x-axis

at (_____, ____) and (_____, ____)

Mark the three points on the grid.

The parabola is symmetrical.


Draw the line of symmetry.

The equation of the line of symmetry is _____

At the 'bottom' of the parabola y has its minimum value.

The co-ordinates of the minimum point

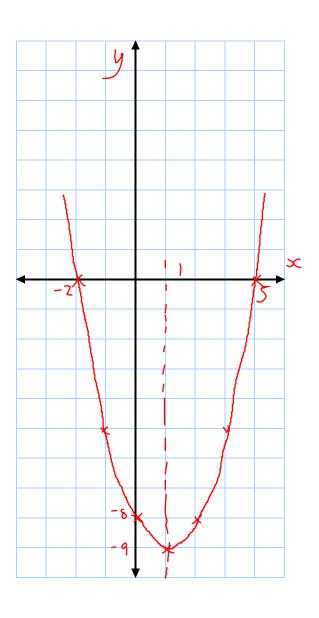
are (_____, , ____)

- Q. How can you sketch the graph of a parabola quickly?
- A. Find out where it crosses each axis.

Example
$$y = x^2 - 2x - 8$$

On the y-axis
$$x = \frac{9}{2}$$
 so $y = \frac{-8}{2}$

The graph crosses the y-axis at $(\underline{0}, \underline{-8})$


Factorise
$$y = x^2 - 2x - 8$$

 $y = (x + 2)(x - 4)$

On the x-axis $y = \bigcirc$

For y to have this value $x = \frac{-2}{}$ or $x = \frac{4}{}$

The graph crosses the x-axis

Mark the three points on the grid.

The parabola is symmetrical. Draw the line of symmetry.

The equation of the line of symmetry is $\frac{\mathcal{L}}{\mathcal{L}}$

At the 'bottom' of the parabola y has its minimum value.

The co-ordinates of the minimum point are $(\underline{},\underline{},\underline{})$

$$y = 3c^{2} - 2xc - 8$$

$$y = 1^{2} - 2xc - 8 = 1 - 2 - 8 = -9$$

$$y = x^2 + 2x - 15$$

On the y-axis $x = \frac{9}{2}$ so $y = \frac{-15}{2}$

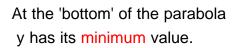
The graph crosses the y-axis at $(\bigcirc , -15)$

Factorise
$$y = x^2 + 2x - 15$$

 $y = (x + 5)(x - 3)$

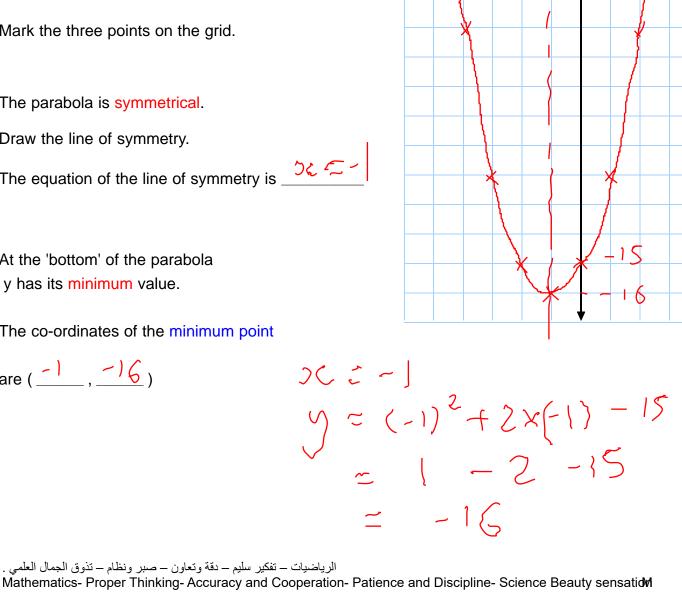
On the x-axis $y = \bigcirc$ For y to have this value $x = \frac{-5}{}$ or $x = \frac{3}{}$

The graph crosses the x-axis


at
$$(\underline{-5},\underline{0})$$
 and $(\underline{3},\underline{0})$

Mark the three points on the grid.

The parabola is symmetrical.


Draw the line of symmetry.

The equation of the line of symmetry is ______

The co-ordinates of the minimum point

are
$$(-1, -16)$$

52 c -