The Distance Formula	
$d = \sqrt{\left(x_2 - x_1\right)^2 + \left(y_2 - y_1\right)^2}$	$\overline{)}^2$

1) Find the distance and midpoint. (8, -4) and (5, -2)

The Mi	idpoint F	ormula	
$MP = \left(\frac{\lambda}{2}\right)$	$\frac{x_1+x_2}{2},$	$\frac{y_1 + y_2}{2}$	$\frac{2}{2}$

2) Find the distance and midpoint. (3,-1) and (-5,-2)

5) (2, -1) is on a circle centered at the point (-1,-2). Write the equation of the circle.

6) (5, 1) is on a circle centered at the point (1,3). Write the equation of the circle.

7) Write the equation of the circle $x^2 + y^2 - 2x + 6y + 3 = 0$ in standard form and graph.

8) Write the equation of the circle $x^2 + y^2 + 4x - 8y - 5 = 0$ in standard form and graph.

