\qquad

The Ellipse

Standard Forms of an Ellipse:

Horizontal Ellipse:	Vertical Ellipse:
$\underline{(x-h)^{2}}+\underline{(y-k)^{2}}$	$\underline{(x-h)^{2}}+\underline{(y-k)^{2}}=1$
$a^{2}+\frac{b^{2}}{}$	$\frac{b^{2}}{a^{2}}$
Vertices: $(h \pm a, k)$	Vertices: $(h, k \pm a)$
Co-Vertices: $(h, k \pm b)$	Co-Vertices: $(h \pm b, k)$
Foci: $(h \pm c, k)$	Foci: $(h, k \pm c)$

Graph each ellipse and identify the center, vertices, co-vertices, and give the location of its foci.

1) $4 x^{2}+25 y^{2}=100$
2) $16 x^{2}+4 y^{2}=64$

3) $\frac{(x-4)^{2}}{20}+\frac{(y+2)^{2}}{36}=1$
4) $\frac{(x+3)^{2}}{25}+\frac{(y-1)^{2}}{4}=1$

Center:
Vertices:
Co-Vertices:

Foci:

Center:
Vertices:
Co-Vertices:

Foci:
5) Write an equation of the ellipse with the vertex ($-6,0$), co-vertex ($0,-1$), and center (0,0).

6) Write an equation of the ellipse with the center (1, 4), focus $(1,4+\sqrt{12})$, and Vertex $(1,0)$,

7) Write an equation of the ellipse with the vertex $(-1,-2)$, focus $(-1,-1)$, and center $(-1,3)$.

8) Write the equation of the ellipse in standard form. Then graph. $2 x^{2}+y^{2}+8 y+6=0$

9) Write the equation of the ellipse in standard form. Then graph.
$x^{2}+4 y^{2}-2 x-3=0$

