The Ellipse

Standard Forms of an Ellipse:

Horizontal Ellipse:

$$\frac{(x-h)^{2}}{a^{2}} + \frac{(y-k)^{2}}{b^{2}} = 1$$

Vertices: $(h \pm a, k)$

Co-Vertices: $(h, k \pm b)$

Foci: $(h \pm c, k)$

Vertical Ellipse:

$$\frac{(x-h)^{2}}{b^{2}} + \frac{(y-k)^{2}}{a^{2}} = 1$$

Vertices: $(h, k \pm a)$

Co-Vertices: $(h \pm b, k)$

Foci: $(h, k \pm c)$

Graph each ellipse and identify the center, vertices, co-vertices, and give the location of its foci.

1)
$$4x^2 + 25y^2 = 100$$

$$2) 16x^2 + 4y^2 = 64$$

Center:

Vertices:

Co-Vertices:

Foci:

Center:

Vertices:

Co-Vertices:

Foci:

3)
$$\frac{(x-4)^2}{20} + \frac{(y+2)^2}{36} = 1$$

Vertices:

Co-Vertices:

Foci:

Center:

Vertices:

Co-Vertices:

Foci:

5) Write an equation of the ellipse with the vertex (-6, 0), co-vertex (0, -1), and center (0,0).

6) Write an equation of the ellipse with the center (1, 4), focus $(1, 4 + \sqrt{12})$, and Vertex (1,0),

7) Write an equation of the ellipse with the vertex (-1,-2), focus (-1, -1), and center (-1, 3).

8) Write the equation of the ellipse in standard form. Then graph.

$$2x^2 + y^2 + 8y + 6 = 0$$

9) Write the equation of the ellipse in standard form. Then graph. $\,$

$$x^2 + 4y^2 - 2x - 3 = 0$$

